Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565548PMC
http://dx.doi.org/10.1016/j.dialog.2024.100196DOI Listing

Publication Analysis

Top Keywords

breaking barriers
4
barriers gender-based
4
gender-based quota
4
quota system
4
system nursing
4
nursing school
4
school admission
4
admission bangladesh
4
breaking
1
gender-based
1

Similar Publications

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane.

View Article and Find Full Text PDF

Background: Although cervical cancer (CC) is highly preventable through appropriate screening methods like the Papanicolaou (Pap) test, which enables early detection of malignant and precancerous lesions, access to such screening has not been equitable across social groups. Sex workers and people with records of incarceration are among the most under-screened populations in Ontario. Little is known about the acceptability and feasibility of HPV self-sampling (HPV-SS) as an alternative cervical cancer screening method for these groups.

View Article and Find Full Text PDF

Low-iridium acid-stabilized electrocatalysts for efficient oxygen evolution reaction (OER) are crucial for the market deployment of proton exchange membrane (PEM) water electrolysis. Manipulating the in situ reconstruction of Ir-based catalysts with favorable kinetics is highly desirable but remains elusive. Herein, we propose an atomic ordering strategy to modulate the dynamic surface restructuring of catalysts to break the activity/stability trade-off.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!