Influences of time delay and connection topology on a multi-delay inertial neural system.

Cogn Neurodyn

Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450046 China.

Published: April 2024

Multiple delays and connection topology are the key parameters for the realistic modeling of networks. This paper discusses the influences of time delays and connection weight on multi-delay artificial neural models with inertial couplings. Firstly, sufficient conditions of some singularities involving static bifurcation, Hopf bifurcation, and pitchfork-Hopf bifurcation are presented by analyzing the transcendental characteristic equation. Secondly, taking self-connection weight and coupling delays as adjusting parameters and utilizing the parameter perturbation with the aid of the non-reduced order technique for the first time, rich dynamics near zero-Hopf interaction are obtained on the plane with self-connected weight and coupling delay as abscissa and ordinate. The multi-delay inertial neural system can exhibit coexisting attractors such as a pair of nontrivial equilibrium points and a periodic orbit with nontrivial equilibrium points. Self-connected weight can affect the number and dynamics of the system equilibrium points, while time delays can contribute to both trivial equilibrium and non-trivial equilibrium losing their stability and generating limit cycles. Simulation plots are displayed with computer software to support the established main results. Compared with the traditional reduced-order method, the used method here is simple and valid with less computation. The key research findings of this paper have significant theoretical guiding value in dominating and optimizing networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564505PMC
http://dx.doi.org/10.1007/s11571-023-10012-wDOI Listing

Publication Analysis

Top Keywords

equilibrium points
12
influences time
8
connection topology
8
multi-delay inertial
8
inertial neural
8
neural system
8
delays connection
8
time delays
8
weight coupling
8
self-connected weight
8

Similar Publications

Impact of media coverage on the transmission dynamics of TB with vaccines and treatment.

PLoS One

January 2025

Department of Mathematics, College of Natural and Computational Science, Debre Berhan University, Debre Berhan, Adis Ababa, Ethiopia.

Tuberculosis (TB) is one of the deadly infectious diseases affecting millions of individuals throughout the world. The main objective of this study is to investigate the impact of media coverage on the transmission dynamics of TB with vaccine and treatment strategy using mathematical model analysis. In the qualitative analysis of the proposed model we proved the existence, uniqueness, positivity, and boundedness of the model solutions, investigated both the disease-free and endemic equilibrium points, computed the basic and effective reproduction numbers using next generation matrix approach, analyzed the stability analysis of the equilibrium points, the backward bifurcation using the Castillo-Chavez and Song theorem and we re-formulated the corresponding optimal control problem and analyzed by applying the Pontryagin's Minimum Principle.

View Article and Find Full Text PDF

The main objective of this work is to study the mathematical model that combines stem cell therapy and chemotherapy for cancer cells. We study the model using the fractal fractional derivative with the Mittag-Leffler kernel. In the analytical part, we study the existence of the solution and its uniqueness, which was studied based on the fixed point theory.

View Article and Find Full Text PDF

In this work, we investigate the dynamics of a discrete-time prey-predator model considering a prey reproductive response as a function of the predation risk, with the prey population growth factor governed by two parameters. The system can evolve toward scenarios of mutual or only of predators extinction, or species coexistence. We analytically show all different types of equilibrium points depending on the ranges of growth parameters.

View Article and Find Full Text PDF

CO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.

View Article and Find Full Text PDF

Determination of the Entire Existence Composition Range of CrMnFeCoNi High-Entropy Alloys Using Sintered Diffusion Multiple Method.

Materials (Basel)

January 2025

Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.

The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!