Liquid metal electrodes based on Ga are an emerging area of interest given their fluid properties which can have significant impact on electrochemical processes. Here we study metal electrodeposition, namely lead electrodeposition on the liquid metal electrodes, gallium (Ga) and galinstan (GaInSn), which was performed in two different Pb electrolytes (PbCl and Pb(NO)) to investigate any differences in the nature of the electrodeposit. Cyclic voltammetry and chronoamperometry were used to study the characteristics, kinetics, and nucleation and growth mechanisms of the electrodeposition process. Analysis of this electrochemical data, such as current density-time transients and diffusion coefficients under different potentials, revealed distinct behaviors for Pb deposition at each liquid metal and electrolyte, influencing the final morphology of the lead deposit. It was also found that the electrolyte concentration and deposition time were found to impact the morphology of the electrodeposited Pb. Scanning electron microscopy and energy dispersive X-ray spectroscopy revealed various types of Pb microstructures, including wire, branch-like, and flake-like formations, highlighting the differences in lead structural development when deposited on liquid gallium and Galinstan electrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561610 | PMC |
http://dx.doi.org/10.1021/acsomega.4c09165 | DOI Listing |
Front Microbiol
January 2025
UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France.
We investigated the metabolome of the iron- and sulfur-oxidizing, extremely thermoacidophilic archaeon grown on mineral pyrite (FeS). The extraction of organic materials from these microorganisms is a major challenge because of the tight contact and interaction between cells and mineral materials. Therefore, we applied an improved protocol to break the microbial cells and separate their organic constituents from the mineral surface, to extract lipophilic compounds through liquid-liquid extraction, and performed metabolomics analyses using MALDI-TOF MS and UHPLC-UHR-Q/TOF.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.
View Article and Find Full Text PDFSe Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Upcycling organic and inorganic waste into value-added metal-organic frameworks (MOFs) presents a sustainable strategy for mitigating waste pollution and promoting economic viability. However, rapid synthesis of MOF materials derived from actual industrial waste under mild conditions remains challenging. Herein, Fe-MOF MIL-88B(Fe) was successfully fabricated within 1 h at room temperature using galvanizing pickling waste liquid and terephthalic acid derived from waste poly(ethylene terephthalate).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States.
Metal flux methods are excellent for synthesizing high-quality hexagonal boron nitride (hBN) crystals, but the atomic mechanisms of hBN nucleation and growth in these systems are poorly understood and difficult to probe experimentally. Here, we harness classical reactive molecular dynamics (ReaxFF) to unravel the mechanisms of hBN synthesis from liquid nickel solvent over time scales up to 30 ns. These simulations mimic experimental conditions by including relatively large liquid nickel slabs containing dissolved boron and a molecular nitrogen gas phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!