A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Microheterogeneous Wettability and Pore-Throat Structure on Asphaltene Precipitation in Tight Sandstone: Results from Nuclear Magnetic Resonance. | LitMetric

The pore throat structure and microheterogeneous wettability of tight sandstone reservoirs are complex, which leads to varying asphaltene precipitation locations, contents, and distributions in different pores during CO flooding. Clarifying the heterogeneous wettability of different pore throat structures and their effects on asphaltene precipitation and adsorption is crucial for improving CO displacement efficiency. A series of experiments were conducted in this study, including X-ray diffraction (XRD), cast thin section (CTS), field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), environmental scanning electron microscopy (E-SEM), nuclear magnetic resonance (NMR), and CO flooding experiments, to investigate the pore structure complexity of tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. Furthermore, we investigated the variations in microheterogeneous wettability across diverse pore-throat structures and elucidated the impact of heterogeneous wettability on asphaltene precipitation during CO flooding. The findings indicate that the type and configuration of pore throats are crucial factors influencing microheterogeneous wettability. The intergranular pores are dominated by mixed wetting, and most of the dissolution pores exhibit oil wetting. The surface of Illite shows drop-like water under E-SEM, which is mainly oil wetting, whereas the surface of chlorite shows film-like water, which is water wetting. The configuration of chlorite intercrystalline pores and intergranular pores shows water wetting, whereas the configuration of Illite intergranular pores and dissolution pores shows oil wetting. During the CO flooding process, asphaltene tends to be adsorbed in the intercrystalline Illite with dissolution pores, reducing the dissolution pore volume and blocking small pores, and the displacement efficiency becomes low. In addition, asphaltene precipitation also occurs in the pore configuration of chlorite intercrystalline and intergranular pores, causing a wetting reversal on hydrophilic mineral surfaces. This reversal increases the pore throat structure complexity but has less of an impact on the flooding efficiency. A high Illite content is more likely to lead to asphaltene precipitation, significantly influencing small pore structure and the oil displacement efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561598PMC
http://dx.doi.org/10.1021/acsomega.4c07672DOI Listing

Publication Analysis

Top Keywords

asphaltene precipitation
24
microheterogeneous wettability
16
intergranular pores
16
tight sandstone
12
pore throat
12
displacement efficiency
12
dissolution pores
12
oil wetting
12
pores
10
nuclear magnetic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!