X-ray structural elucidation, supramolecular self-assembly, and energetics of existential noncovalent interactions for a triad comprising α-diketone, α-ketoimine, and an imidorhenium complex are highlighted in this report. Molecular packing reveals a self-assembled 2D network stabilized by the C-H···O H-bonds for the α-diketone (benzil), and the first structural report of Brown and Sadanaga stressing on the prevalence of seems to be an oversimplified conjecture. In the α-ketoimine, the imine nitrogen atom undergoes intramolecular N···H interaction to render itself inert toward intermolecular C-H···N interaction and exhibits two types of C-H···O H-bonds in consequence to generate a self-assembled 2D molecular architecture. The imidorhenium complex features a self-aggregated 3D packing engendered by the interplay of C-H···Cl H-bonds along with the ancillary C-H···π, C···C, and C···Cl contacts. To the best of our knowledge, in rhenium chemistry, this imidorhenium complex unravels the first example of self-associated 3D molecular packing constructed by the directional hydrogen bonds of C-H···Cl type. The presence of characteristic supramolecular synthons, viz., R (12), R (16), and R (14), in the α-diketone, α-ketoimine, and imidorhenium complex, respectively, has prompted us to delve into the energetics of noncovalent interactions. Symmetry-adapted perturbation theory analysis has authenticated a stability order: R (14) > R (12) > R (16) based on the interaction energy values of -25.97, -9.93, and -4.98 kcal/mol, respectively. The respective average contributions of the long-range dispersion, electrostatic, and induction forces are 58.5, 32.8, and 8.7%, respectively, for the intermolecular C-H···O interactions. The C-H···Cl interactions experience comparable contribution from the dispersion force (57.9% on average), although the electrostatic and induction forces contribute much less, 28.0 and 14.1%, respectively, on average. The natural energy decomposition analysis has further attested that the short-range, interfragment charge transfer occurring via the lp(O/Cl) → σ*(C-H) routes contributes 17-25% of the total attractive force for the C-H···O and C-H···Cl interactions. Quantum theory of atoms in molecules analysis unfolds a first-order exponential decay relation ( = 8.1043 ) between the electron density at the bond critical point and the distance of noncovalent interactions. The distances of noncovalent interactions in the lattices are internally governed by the individual packing patterns rather than the chemical nature of the H-bond donors and acceptors. Intrinsic bond strength index analysis shows promise to correlate the electron density at BCP with the SAPT-derived interaction energy for the noncovalent interactions. Two factors: (i) nearly half the HOMO-LUMO energy difference for the imidorhenium complex (∼30 kcal/mol) compared to the organics, and (ii) ∼60% localization of HOMO over the -ReCl moiety clearly indicate an enhanced polarizability of the complex facilitating the growth of weak C-H···Cl H-bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561771 | PMC |
http://dx.doi.org/10.1021/acsomega.4c07702 | DOI Listing |
ACS Omega
November 2024
Department of Chemistry, St. Paul's Cathedral Mission College, University of Calcutta, 33/1 Raja Rammohan Roy Sarani, Kolkata 700009, India.
X-ray structural elucidation, supramolecular self-assembly, and energetics of existential noncovalent interactions for a triad comprising α-diketone, α-ketoimine, and an imidorhenium complex are highlighted in this report. Molecular packing reveals a self-assembled 2D network stabilized by the C-H···O H-bonds for the α-diketone (benzil), and the first structural report of Brown and Sadanaga stressing on the prevalence of seems to be an oversimplified conjecture. In the α-ketoimine, the imine nitrogen atom undergoes intramolecular N···H interaction to render itself inert toward intermolecular C-H···N interaction and exhibits two types of C-H···O H-bonds in consequence to generate a self-assembled 2D molecular architecture.
View Article and Find Full Text PDFInorg Chem
February 2008
Department of Chemistry, University of California, Berkeley, California 94720, USA.
The syntheses and characterization of several octahedral hexatantalum cluster compounds of formula (ArN)14Ta6O are described (Ar=Ph, p-MeC6H4, p-MeOC6H4, p-t-BuC6H4, p-BrC6H4, m-ClC6H4). Treatment of Bn3Ta=N-t-Bu (Bn=CH2C6H5) or pentakis(dimethylamido)tantalum with an excess of the appropriate aniline and stoichiometric water or tantalum oxide afforded varying yields of arylimido clusters. The structures of two species were confirmed by X-ray diffraction (XRD), while the identity of the central oxygen atom was elucidated by electrospray mass spectrometry (MS) using 17O/18O-enriched material.
View Article and Find Full Text PDFInorg Chem
May 2002
Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
The concerned azoles are 2-(2-pyridyl)benzoxazole (pbo) and 2-(2-pyridyl)benzthiazole (pbt). These react with ReOCl(3)(PPh(3))(2) in benzene, affording Re(V)OCl(3)(pbo) and Re(V)OCl(3)(pbt), which undergo facile oxygen atom transfer to PPh(2)R (R = Ph, Me) in dichloromethane solution, furnishing Re(III)(OPPh(2)R)Cl(3)(pbo) and Re(III)(OPPh(2)R)Cl(3)(pbt). The oxo species react with aniline in toluene solution, yielding the imido complexes Re(V)(NPh)Cl(3)(pbo) and Re(V)(NPh)Cl(3)(pbt).
View Article and Find Full Text PDFInorg Chem
March 2001
Ames Laboratory and Department of Chemistry, Iowa State University of Science and Technology, Ames 50011, USA.
The relative binding abilities of PY(3) (PMe(3), PMe(2)Ph, PMePh(2), PPh(3), P(OMe)(3), P(OMe)(2)Ph, PEt(3), P(OEt)(3), P(OEt)Ph(2), and dmpe) toward Re(V) were evaluated. The equilibrium constants for the reactions, MeRe(NAr)(2)[P(OMe)(3)](2) + PY(3) = MeRe(NAr)(2)(PY(3))(2) (1) + P(OMe)(3), decrease in the order PMe(3) > dmpe > PMe(2)Ph > P(OMe)(2)Ph approximately PEt(3) > P(OEt)(3) > PMePh(2) > P(OEt)Ph(2) > PPh(3). Both electronic and steric factors contribute to this trend.
View Article and Find Full Text PDFInorg Chem
December 2000
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.
The reaction of Re(NC6H4R)Cl3(PPh3)2 (R = H, 4-Cl, 4-OMe) with 1,2-bis(diphenylphosphino)ethane (dppe) is investigated in refluxing ethanol. The reaction produces two major products, Re(NC6H4R)Cl(dppe)(2)2+ (R = H, 1-H; R = Cl, 1-Cl; R = OMe, 1-OMe) and the rhenium(III) species Re(NHC6H4R)Cl(dppe)2+ (R = H, 2-H; R = Cl, 2-Cl). Complexes 1-H (orthorhombic, Pcab, a = 22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!