Artificial intelligence, machine learning, and deep learning are increasingly being used in all medical fields including for epilepsy research and clinical care. Already there have been resultant cutting-edge applications in both the clinical and research arenas of epileptology. Because there is a need to disseminate knowledge about these approaches, how to use them, their advantages, and their potential limitations, the goal of the 2023 Merritt-Putnam Symposium and of this synopsis review of that symposium has been to present the background and state of the art and then to draw conclusions on current and future applications of these approaches through the following: (1) Initially provide an explanation of the fundamental principles of artificial intelligence, machine learning, and deep learning. These are presented in the first section of this review by Dr Wesley Kerr. (2) Provide insights into their cutting-edge applications in screening for medications in neural organoids, in general, and for epilepsy in particular. These are presented by Dr Sandra Acosta. (3) Provide insights into how artificial intelligence approaches can predict clinical response to medication treatments. These are presented by Dr Patrick Kwan. (4) Finally, provide insights into the expanding applications to the detection and analysis of EEG signals in intensive care, epilepsy monitoring unit, and intracranial monitoring situations, as presented below by Dr Gregory Worrell. The expectation is that, in the coming decade and beyond, the increasing use of the above approaches will transform epilepsy research and care and supplement, but not replace, the diligent work of epilepsy clinicians and researchers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562289PMC
http://dx.doi.org/10.1177/15357597241238526DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
16
provide insights
12
intelligence machine
8
machine learning
8
learning deep
8
deep learning
8
cutting-edge applications
8
epilepsy
6
applications
5
artificial
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

January 2025

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks.

J Transl Med

January 2025

School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.

Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.

View Article and Find Full Text PDF

Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA.  METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!