Pulmonary fibrosis, including systemic sclerosis-associated interstitial lung disease (SSc-ILD), involves myofibroblasts and SPP1 macrophages as drivers of fibrosis. Single-cell RNA sequencing has delineated fibroblast and macrophages transcriptomes, but limited insight into transcriptional control of profibrotic gene programs. To address this challenge, we analyzed multiomic snATAC/snRNA-seq on explanted SSc-ILD and donor control lungs. The neural network tool ChromBPNet inferred increased TF binding at single base pair resolution to profibrotic genes, including CTHRC1 and ADAM12, in fibroblasts and SPP1 and CCL18 in macrophages. The novel algorithm HALO confirmed AP-1, RUNX, and EGR TF activity controlling profibrotic gene programs and established TF-regulatory element-gene networks. This TF action atlas provides comprehensive insights into the transcriptional regulation of fibroblasts and macrophages in healthy and fibrotic human lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565795PMC
http://dx.doi.org/10.1101/2024.10.23.619858DOI Listing

Publication Analysis

Top Keywords

ap-1 runx
8
runx egr
8
lung disease
8
profibrotic gene
8
gene programs
8
altered ap-1
4
egr chromatin
4
chromatin dynamics
4
dynamics drive
4
drive fibrotic
4

Similar Publications

Pulmonary fibrosis, including systemic sclerosis-associated interstitial lung disease (SSc-ILD), involves myofibroblasts and SPP1 macrophages as drivers of fibrosis. Single-cell RNA sequencing has delineated fibroblast and macrophages transcriptomes, but limited insight into transcriptional control of profibrotic gene programs. To address this challenge, we analyzed multiomic snATAC/snRNA-seq on explanted SSc-ILD and donor control lungs.

View Article and Find Full Text PDF

The identification of specific markers for microglia has been a long-standing challenge. Recently, markers such as P2ry12, TMEM119, and Fcrls have been proposed as microglia-specific and widely used to explore microglial functions within various central nervous system (CNS) contexts. The specificity of these markers was based on the assumption that circulating monocytes retain their distinct signatures even after infiltrating the CNS.

View Article and Find Full Text PDF
Article Synopsis
  • Gastric cancer (GC) is the fifth most common cancer globally, exhibiting distinct aggressive behaviors between its mesenchymal (Mes-like) and epithelial (Epi-like) subtypes.
  • Researchers utilized ATAC-seq and RNA-seq from various GC cell lines and tumors to uncover regulatory mechanisms and transcription factors (TFs) influencing these subtypes.
  • The study identified key TFs linked to each GC subtype and highlighted how DNA copy number changes can disrupt these factors, contributing to the complexity and progression of gastric cancer.
View Article and Find Full Text PDF
Article Synopsis
  • Amplification of MDM2 on extra chromosomes is a frequent way tumors inactivate the P53 protein, which is crucial for controlling cell growth and preventing cancer.
  • In dedifferentiated liposarcoma, MDM2 overexpression affects gene regulation and cell characteristics through three main regulatory circuits and interacts with other transcription factors.
  • There is significant variability in MDM2 levels within tumor cells, and while most liposarcoma cells respond to MDM2 inhibitors combined with pro-apoptotic drugs, those with high MDM2 levels tend to resist these treatments, leading to poor clinical outcomes.
View Article and Find Full Text PDF

Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer.

Semin Cancer Biol

December 2022

Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom. Electronic address:

Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!