During cytokinesis, an equatorial contractile ring partitions the cell contents. Contractile ring assembly requires an equatorial zone of active GTP-bound RhoA generated by the guanine nucleotide exchange factor ECT2. ECT2 is activated by centralspindlin, a complex composed of two molecules each of kinesin-6 and CYK4. During anaphase, Centralspindlin is activated at the central spindle between the separating chromosomes and diffuses to the plasma membrane, where it engages with ECT2 via its N-terminal half. The C-terminal half of CYK4 contains a lipid-binding C1 domain that contributes to plasma membrane targeting and a GTPase-activating protein (GAP) domain that has an interaction surface for a Rho family GTPase, whose functions have remained unclear . Here, using the one-cell stage embryo as a model, we show that RhoA and the Rho-binding interface of the CYK4 GAP domain drive the recruitment of centralspindlin to the equatorial cortex. By contrast, a point mutant that selectively disrupts GAP activity does not prevent cortical centralspindlin recruitment but instead substantially delays dissipation of centralspindlin from the cortex. These findings suggest that positive feedback, in which centralspindlin recruitment promotes the generation of active RhoA and active RhoA drives centralspindlin recruitment, is central to the rapid assembly of the contractile ring within a narrow time window. They also indicate that the CYK4 GAP catalytic activity contributes to release of centralspindlin from the cortex, potentially to ensure timely dissolution of the contractile ring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565784 | PMC |
http://dx.doi.org/10.1101/2024.10.29.620943 | DOI Listing |
Mol Biol Cell
January 2025
Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.
The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation.
View Article and Find Full Text PDFmBio
December 2024
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia. Electronic address:
Non-conventional snake venom toxins, such as WTX from the cobra Naja kaouthia, are three-finger proteins containing a fifth disulfide bond in the N-terminal polypeptide loop I and inhibiting α7 and muscle-type nicotinic acetylcholine receptors (nAChRs). Because the central polypeptide loop II of non-conventional toxins plays an important role in their biological activity, we synthesized several WTX loop II fragments with two cysteine residues added at the N- and C-termini and oxidized to form a disulfide bond. The inhibition by peptides of several nAChRs subtypes was investigated using different methods and the effects of peptides on the rat arterial pressure and heart rate were analyzed.
View Article and Find Full Text PDFNat Neurosci
January 2025
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Over a decade ago, it was discovered that microglia, the brain's immune cells, engulf synaptic material in a process named microglial pruning. This term suggests that microglia actively sculpt brain circuits by tagging and phagocytosing unwanted synapses. However, live imaging studies have yet to demonstrate how microglial synapse elimination occurs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!