The mRNA cap methyltransferase CMTR1 plays a crucial role in RNA metabolism and gene expression regulation, yet its significance in cancer remains largely unexplored. Here, we present a comprehensive multi-omics analysis of CMTR1 across various human cancers, revealing its widespread upregulation and potential as a therapeutic target. Integrating transcriptomic and proteomic data from a large set of cancer samples, we demonstrate that CMTR1 is upregulated at the mRNA, protein, and phosphoprotein levels across multiple cancer types. Functional studies using CRISPR-mediated knockout and siRNA knockdown in breast cancer models show that CMTR1 depletion significantly inhibits tumor growth both and . Transcriptomic analysis reveals that CMTR1 primarily regulates ribosomal protein genes and other transcripts containing 5' Terminal Oligopyrimidine (TOP) motifs. Additionally, CMTR1 affects the expression of snoRNA host genes and snoRNAs, suggesting a broader role in RNA metabolism. Mechanistically, we propose that CMTR1's target specificity is partly determined by mRNA structure, particularly the presence of 5'TOP motifs. Furthermore, we identify a novel CMTR1 inhibitor, N97911, through screening and biochemical assays, which demonstrates significant anti-tumor activity . Our findings establish CMTR1 as a key player in cancer biology, regulating critical aspects of RNA metabolism and ribosome biogenesis, and highlight its potential as a therapeutic target across multiple cancer types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565914PMC
http://dx.doi.org/10.1101/2024.10.30.621171DOI Listing

Publication Analysis

Top Keywords

rna metabolism
12
cmtr1
9
multi-omics analysis
8
analysis reveals
8
reveals cmtr1
8
ribosomal protein
8
gene expression
8
tumor growth
8
role rna
8
potential therapeutic
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Human pluripotent stem cell (hPSC)-derived brain organoids patterned towards the cerebral cortex are valuable models of interactions occurring in vivo in cortical tissue. We and others have used these cortical organoids to model dominantly inherited FTD-tau. While these studies have provided essential insights, cortical organoid models have yet to reach their full potential.

View Article and Find Full Text PDF

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Background: ABCA1-mediated cholesterol transport is a central feature in many lipid- dependent diseases including APOE4-associated Alzheimer's disease and atherosclerosis-CVD. ABCA1 upregulation of RNA transcription by nuclear factors (LXR, RXR) have been associated with liver side-effects because of the common promotor element for ABCA1 and Fatty Acid Synthase. The ABCA1 agonist CS6253, derived from the C-terminal of apoE was designed to stabilize and enhance ABCA1 function, thereby providing a safe alternative to transcriptional upregulation.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!