Unlabelled: The cellular metabolism of macrophages depends on tissue niches and can control macrophage inflammatory or resolving phenotypes. Yet, the identity of signals within tissue niches that control macrophage metabolism is not well understood. Here, using single-cell RNA sequencing of macrophages in early mouse wounds, we find that, rather than gene expression of canonical inflammatory or resolving polarization markers, metabolic gene expression defines distinct populations of early wound macrophages. Single-cell secretomics and transcriptomics identify inflammatory and resolving cytokines expressed by early wound macrophages, and we show that these signals drive metabolic inputs and mitochondrial metabolism in an age-dependent manner. We show that aging alters the metabolome of early wound macrophages and rewires their metabolism from mitochondria to glycolysis. We further show that macrophage-derived Chi3l3 and IGF-1 can induce metabolic inputs and mitochondrial mass/metabolism in aged and bone marrow-derived macrophages. Together, these findings reveal that macrophage-derived signals drive the mitochondrial metabolism of macrophages within early wounds in an age-dependent manner and have implications for inflammatory diseases, chronic injuries, and age-related inflammatory diseases.
In Brief: This study reveals that macrophage subsets in early inflammatory stages of skin wound healing are defined by their metabolic profiles rather than polarization phenotype. Using single-cell secretomics, we establish key macrophage cytokines that comprise the wound niche and drive mitochondrial-based metabolism. Aging significantly alters macrophage heterogeneity and increases glycolytic metabolism, which can be restored to OxPHOS-based metabolism with young niche cytokines. These findings highlight the importance of the tissue niche in driving macrophage phenotypes, with implications for aging-related impairments in wound healing.
Highlights: Single cell transcriptional analysis reveals that reveals that metabolic gene expression identifies distinct macrophage populations in early skin wounds.Single-cell secretomic data show that young macrophages contribute to the wound bed niche by secreting molecules such as IGF-1 and Chi3l3.Old wound macrophages display altered metabolomics, elevated glycolytic metabolism and glucose uptake, and reduced lipid uptake and mitochondrial mass/metabolism.Chi3l3 but not IGF-1 secretion is altered in macrophages in an age dependent manner.Chi3l3 can restore mitochondrial mass/metabolism in aged macrophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565841 | PMC |
http://dx.doi.org/10.1101/2024.10.30.621159 | DOI Listing |
PLoS One
December 2024
Department of Applied Mathematics, University of California, Santa Cruz, Santa Cruz, CA, United States of America.
The motility of macrophages in response to microenvironment stimuli is a hallmark of innate immunity, where macrophages play pro-inflammatory or pro-reparatory roles depending on their activation status during wound healing. Cell size and shape have been informative in defining macrophage subtypes. Studies show pro and anti-inflammatory macrophages exhibit distinct migratory behaviors, in vitro, in 3D and in vivo but this link has not been rigorously studied.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Department of Neurosurgery, Quzhou People's Hospital, No. 100, Minjiang Avenue, High-speed Rail, New City, Quzhou, Zhejiang, China.
Traumatic brain injury (TBI) is a common neurosurgical emergency. As a macrophage in brain, microglia involves in secondary TBI injury. UCF-101, an Omi/HtrA2 inhibitor, protects against neurological disorders.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China. Electronic address:
The management of diabetic wounds (DW) is a significant challenge within the medical field. Effectively regulating the levels of reactive oxygen species (ROS) at the wound site and orchestrating the inflammatory response are effective strategies for DW treatment. In this study, a novel hydrogel was developed by cross-linking polyboronic acid-modified carboxymethyl chitosan with herbal active ingredient rosmarinic acid (RA), an active herbal ingredient, through dynamic boronic esters formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!