Regions of intrinsic disorder play crucial roles in biological systems, yet they often elude characterization by conventional biophysical techniques. To capture conformational distributions across different timescales, we employed a freezing approach coupled with solid-state NMR analysis. Using segmentally isotopically labeled α-synuclein (α-syn), we investigated the conformational preferences of the six alanines, three glycines, and a single site (L8) in the disordered amino terminus under three distinct conditions: in 8 M urea, as a frozen monomer in buffer, and within the disordered regions flanking the amyloid core. The experimental spectra varied significantly among these conditions and deviated from those of a statistical coil. In 8 M urea, monomeric α-syn exhibited the most restricted conformational sampling, rarely accessing chemical shifts characteristic of α-helices or β-strands. In buffer, monomeric α-syn showed broader conformational sampling, favoring α-helical conformations and, to a lesser extent, random coil states. Notably, amino acids in the disordered regions flanking the amyloid core demonstrated the most extensive conformational sampling, with broad peaks encompassing the entire range of possible chemical shifts and a marked preference for highly extended β-strand conformations. Collectively, this work demonstrates that intrinsically disordered regions exhibit distinct conformational preferences, which are influenced not only by the chemical environment but also by the conformations of adjacent protein sequences. The differences in the conformational ensembles of the disordered amino terminus may explain why the monomer and the amyloid form of α-syn interact with different biomolecules inside cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565972 | PMC |
http://dx.doi.org/10.1101/2024.10.31.621304 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
Leishmaniasis is a neglected tropical disease caused by protozoans of the Leishmania genus, against which no effective treatment or control is available. Like other eukaryotes, parasite telomeres are maintained by telomerase, a ribonucleoprotein complex vital for genome stability. Its protein component, TERT (telomerase reverse transcriptase), presents four structural and functional domains, with the TEN (Telomerase N-terminal) and TRBD (Telomerase RNA-binding) located at its N-terminal.
View Article and Find Full Text PDFIUCrdata
December 2024
EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom.
In the title compound, CHNO the pyrrolidine ring is almost planar and subtends a dihedral angle of 85.77 (7)° with the pendant phenyl ring. An intra-molecular N-H⋯O hydrogen bond generates an (6) loop.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Biotechnology SRM Institute of Science and Technology, Kattankulathur Campus Chengalpattu Tamil Nadu - 603203 India.
In the crystal structure of the title chalcone derivative, CHNO, the mol-ecule adopts an s- conformation with respect to the C=O and C=C bonds. The tri-phenyl-amine moiety has a propeller-type shape, with dihedral angles between the mean planes of pairs of phenyl rings of 72.1 (6), 69.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science, Southwest University, Chongqing 400715, China.
The aim of this study was to investigate the promotion of linoleic acid (OLA)-induced myofibrillar protein (MP) oxidation by boiling treatment. The effect of the boiling treatment on grass carp MP oxidation induced by OLA was investigated. The total sulfhydryl content, fluorescence intensity, and amino acid content were reduced with the increasing OLA concentration after the boiling treatment, while the boiled oxidized MP's carbonyl content (4.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!