In this research, we developed an ultrafast laser system based on a Yb-doped fiber oscillator and Yb:YAG thin-rod amplifier to investigate the efficacy of the laser for the treatment of pigmented lesions. The developed laser exhibited an output power of 22.7 W, center wavelength of 1030 nm, repetition rate of 495 kHz, pulse energy of 45.9 µJ, and pulse duration of 1.56 ps, respectively. For a compact and stable chirped pulse amplification system, a chirped fiber Bragg grating (CFBG) stretcher and a chirped volume Bragg grating (CVBG) compressor, both with fixed dispersion, were used. The dispersion of the total laser systems was precisely compensated by adjusting the length of the passive fiber and utilizing the self-phase modulation effect of the fiber amplifier. The developed ultrafast laser system was then applied in preclinical studies for the treatment of pigmented lesions in a guinea pig model. Three colored squares, each measuring approximately 15 × 15 mm, were treated by scanning a focused beam with varying laser fluences ranging from 0.5 to 2 J/cm, using wavelengths of 515 nm and 1030 nm. The colorimeter measurements, which were performed 1-5 weeks after laser treatment, indicated that the laser was effective in reducing pigment, particularly black and blue pigments at higher fluences. This research represents the first trial of a preclinical study on pigmented lesions using an ultrafast laser system with a pulse duration below 10 ps, shorter than the stress relaxation time of 10 nm melanin granules. The results are meaningful as they offer valuable insights into the effectiveness of ultrafast laser therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563317 | PMC |
http://dx.doi.org/10.1364/BOE.540536 | DOI Listing |
Nanomicro Lett
January 2025
College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage. However, achieving an integrated high evaporation rate, salt harvesting, and multifunctionality in evaporator is still a crucial challenge. Here, a novel composite membrane with biomimetic micro-nanostructured superhydrophobic surface is designed via ultrafast laser etching technology.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
The Particle Time of Flight (PTOF) diagnostic is a chemical vapor deposition diamond-based detector and is the only diagnostic for measuring nuclear bang times of low yield (<1013) shots on the National Ignition Facility. Recently, a comprehensive study of detector impulse responses revealed certain detectors with very fast and consistent impulse responses with a rise time of <50 ps, enabling low yield burn history measurements. At the current standoff of 50 cm, this measurement is possible with fast 14 MeV neutrons from deuterium-tritium (DT) fusion plasmas.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.
Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, Grenoble, CS 40220, 38043, France.
Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!