A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Strengths of Mandibular Angle Fractures Following Different Plate Designs: A Human Cadaver Study. | LitMetric

Comparison of Strengths of Mandibular Angle Fractures Following Different Plate Designs: A Human Cadaver Study.

Craniomaxillofac Trauma Reconstr

Department of Oral Maxillofacial Surgery, UAB School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.

Published: December 2024

Study Design: This institutional cross-sectional study using cadaveric mandibles aimed to measure and compare the strengths of three plating designs utilized in osteosynthesis of mandibular angle fractures.

Objective: There have been prior studies on angle fracture fixation though few biomechanical studies on human cadaveric specimen. This study aims to directly compare the biomechanical strength of different plating designs to the mandibular angle fracture using a human cadaveric specimen substrate.

Methods: After receiving an angle osteotomy and either single plate, two plate, or 3D plate fixation, the specimens underwent biomechanical testing using the Instron 5565 mechanical testing unit. The primary outcomes measured were peak load at which permanent deformation started, displacement value at peak load, and load necessary for a specific amount of displacement at 1, 3, 5, and 7 mm.

Results: There were 15 hemi-mandibles in each group. Based on data analysis of all the specimens, there were no significant differences in the mandibular height, ramus width, mandibular thickness, angle height, and gonial angle between the hemimandibles.. This study demonstrated a statistically significant increased strength performance of the 3D plate over the single plate fixation and the 2-plate over the single plate fixation. The results between 2-plate and 3D plate were in similar values.

Conclusions: In terms of biomechanical strength, the 3D plate and two plate designs outperform the single plate design to mandibular angle fractures. There are various anatomical and patient specific situations that can aid in selection between them. In the absence of the favorable angle fracture and patient, biomechanical strength to the method of fixation selection needs to be considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563014PMC
http://dx.doi.org/10.1177/19433875231225707DOI Listing

Publication Analysis

Top Keywords

mandibular angle
16
single plate
16
angle fracture
12
biomechanical strength
12
plate plate
12
plate fixation
12
plate
11
angle
9
angle fractures
8
plate designs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!