Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study combines high-throughput screening and virtual molecular docking to identify natural compounds targeting PKC in skin aging. Go 6983, a PKC inhibitor, showed potent suppression of MMP-1 transcription. EGCG was one of the candidates that showed it could significantly lower UVB-induced MMP-1 expression in HaCaT cells, and it had a strong affinity for PKCα. Interestingly, EGCG is exclusively bound to PKCα, not the δ and ζ isoforms. Blocking PKCα did not elevate UVB-induced MMP-1 expression in HaCaT cells. In a model of human skin, EGCG stopped collagen breakdown and changes in epidermal thickness that were caused by UV light from the sun. This suggests that EGCG could be useful in dermatology and drug development. These findings highlight the role of structure-based screening in identifying candidate compounds with applications in the cosmetic, dermatological, preventive health, and pharmaceutical fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567019 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e39933 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!