Background: The unfolded protein response (UPR) is a critical biological process related to a variety of physiological functions and cardiac disease. However, the role of UPR-related genes in acute myocardial infarction (AMI) has not been well characterized. Therefore, this study aims to elucidate the mechanism and role of the UPR in the context of AMI.

Methods: Gene expression profiles related to AMI and UPR pathway were downloaded from the Gene Expression Omnibus database and PathCards database, respectively. Differentially expressed genes (DEGs) were identified and then functionally annotated. The random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to identify potential diagnostic UPR-AMI biomarkers. Furthermore, the results were validated by using external data sets, and discriminability was measured by the area under the curve (AUC). A nomogram based on the feature genes was developed to predict the AMI-risk rate. Then we utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the key genes and immune microenvironment. Additionally, we performed uniform clustering of AMI samples based on the expression of UPR pathway-related genes. The weighted gene co-expression network analysis was conducted to identify the key modules in various clusters, enrichment analysis was performed for the genes existing in different modules.

Results: A total of 14 DEGs related to the UPR pathway were identified. Among the 14 DEGs, , , , and were subsequently identified as biomarkers by the LASSO and RF algorithms. A diagnostic model was constructed with these four genes, and the AUC was 0.939. The calibration curves, receiver operating characteristic (ROC) curves, and the decision curve analysis of the nomogram exhibited good performance. Furthermore, immune cell infiltration analysis revealed that four feature genes were linked with the infiltration of immune cells such as neutrophils. The cluster analysis of the AMI samples identified two distinct clusters, each with differential expression of genes related to the UPR pathway, immune cell infiltration, and inflammatory cytokine secretion. Weighted gene coexpression network analysis and enrichment analysis showed that both clusters were associated with the UPR.

Conclusions: Our study highlights the importance of the UPR pathway in the pathogenesis of myocardial infarction, and identifies four genes , , , and as diagnostic biomarkers for AMI, providing new ideas for the clinical diagnosis and treatment of AMI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565340PMC
http://dx.doi.org/10.21037/jtd-24-622DOI Listing

Publication Analysis

Top Keywords

upr pathway
16
myocardial infarction
12
genes
10
unfolded protein
8
protein response
8
acute myocardial
8
gene expression
8
analysis
8
analysis conducted
8
conducted identify
8

Similar Publications

Background: Bipolar disorder (BD) has been associated with impaired cellular resilience. Recent studies have shown abnormalities in the unfolded protein response (UPR) in BD. The UPR is the cellular response to endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells.

Sci Adv

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

The unfolded protein response (UPR) pathway is crucial for tumorigenesis, mainly by regulating cancer cell stress responses and survival. However, whether UPR factors facilitate cell-cell communication between cancer cells and immune cells to drive cancer progression remains unclear. We found that adenosine 3',5'-monophosphate response element-binding protein 3-like protein 2 (CREB3L2), a noncanonical UPR factor, is overexpressed and activated in triple-negative breast cancer, where its cleavage releases a C-terminal fragment that activates the Hedgehog pathway in neighboring CD8+ T cells.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!