A molecular Kuhn-scale model is presented for the stress relaxation dynamics of entangled polymer networks. The governing equation of the model is given by the general form of the linearized Langevin equation. Based on the fluctuation-dissipation theorem, the stress relaxation modulus is derived using the normal mode representation. The entanglements are introduced as additional entropic springs connecting internal beads of the network strands. The validity of the model is assessed by comparing predicted stress relaxation modulus and viscoelastic storage and loss moduli with the estimates from molecular dynamics (MD) simulations, using the same computer models. A finite element procedure is proposed and used to assemble the network connectivity matrix, and its numerically solved eigenvalues are used to predict the linear stress relaxation dynamics. Both perfect (fully polymerized stoichiometric) and imperfect networks with different soluble and dangling structures and loops are studied using mapped Kuhn-scale network models with up to several dozen thousand Kuhn segments. It is shown that for the overlapping ranges of times and frequencies, the model predictions and MD estimates agree well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562782 | PMC |
http://dx.doi.org/10.1021/acs.macromol.4c01429 | DOI Listing |
Biomech Model Mechanobiol
December 2024
Bioengineering, University of California, Santa Barbara, Santa Barbara, United States.
The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFSci Rep
December 2024
Mines Saint-Etienne, Université Jean Monnet, INSERM, U 1059 SAINBIOSE, Saint-Etienne, 42023, France.
In this study, we investigated gene expression in vitro of human primary Aortic smooth muscle cells (AoSMCs) in response to 9% physiological dynamic stretch over a 4 to 72-h timeframe using RT-qPCR. AoSMC were derived from primary culture and were exposed to continuous cycles of stretch and relaxation at 1 Hz by a computer-controlled Flex Jr.™ Tension System.
View Article and Find Full Text PDFAust Crit Care
December 2024
Department of Music, Canadian Centre for Ethnomusicology (CCE), Department of Performing Arts, Faculty of Communication and Media Studies, University for Development Studies, Ghana; Department of Music, Faculty of Arts, University of Alberta, 3-98 Fine Arts Building, Edmonton, AB, T6G 2C9, Canada. Electronic address:
Background: Despite syntheses of evidence showing efficacy of music intervention for improving psychological and physiological outcomes in critically ill patients, interventions that include nonmusic sounds have not been addressed in reviews of evidence. It is unclear if nonmusic sounds in the intensive care unit (ICU) can confer benefits similar to those of music.
Objective: The aim of this study was to summarise and contrast available evidence on the effect of music and nonmusic sound interventions for the physiological and psychological outcomes of ICU patients based on the results of randomised controlled trials.
J Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:
The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!