AI Article Synopsis

  • The study aimed to evaluate relationships between three key cerebrovascular functions (blood-brain barrier permeability, vascular pulsatility, and cerebrovascular reactivity) in patients with cerebral small vessel diseases (SVD), including both sporadic cases and a genetic condition known as CADASIL.
  • Researchers used advanced brain imaging techniques to analyze these functions in a group of 77 patients, assessing how they relate to SVD severity, subtype, and specific brain changes.
  • Findings revealed that worse white matter hyperintensity (WMH) was linked to lower cerebrovascular reactivity and blood plasma volume fraction, with the type of SVD having little impact on these vascular functions after accounting for WMH severity.

Article Abstract

Objective: Cerebral small vessel diseases (SVDs) are associated with cerebrovascular dysfunction, such as increased blood-brain barrier leakage (permeability surface area product), vascular pulsatility, and decreased cerebrovascular reactivity (CVR). No studies assessed all 3 functions concurrently. We assessed 3 key vascular functions in sporadic and genetic SVD to determine associations with SVD severity, subtype, and interrelations.

Methods: In this prospective, cross-sectional, multicenter INVESTIGATE-SVDs study, we acquired brain magnetic resonance imaging in patients with sporadic SVD/cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), including structural, quantitative microstructural, permeability surface area product, blood plasma volume fraction, vascular pulsatility, and CVR (in response to CO) scans. We determined vascular function and white matter hyperintensity (WMH) associations, using covariate-adjusted linear regression; normal-appearing white matter and WMH differences, interrelationships between vascular functions, using linear mixed models; and major sources of variance using principal component analyses.

Results: We recruited 77 patients (45 sporadic/32 CADASIL) at 3 sites. In adjusted analyses, patients with worse WMH had lower CVR (B = -1.78, 95% CI -3.30, -0.27) and blood plasma volume fraction (B = -0.594, 95% CI -0.987, -0.202). CVR was worse in WMH than normal-appearing white matter (eg, CVR: B = -0.048, 95% CI -0.079, -0.017). Adjusting for WMH severity, SVD subtype had minimal influence on vascular function (eg, CVR in CADASIL vs sporadic: B = 0.0169, 95% CI -0.0247, 0.0584). Different vascular function mechanisms were not generally interrelated (eg, permeability surface area product~CVR: B = -0.85, 95% CI -4.72, 3.02). Principal component analyses identified WMH volume/quantitative microstructural metrics explained most variance in CADASIL and arterial pulsatility in sporadic SVD, but similar main variance sources.

Interpretation: Vascular function was worse with higher WMH, and in WMH than normal-appearing white matter. Sporadic SVD-CADASIL differences largely reflect disease severity. Limited vascular function interrelations may suggest disease stage-specific differences. ANN NEUROL 2024.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.27136DOI Listing

Publication Analysis

Top Keywords

vascular function
20
white matter
16
permeability surface
12
surface area
12
normal-appearing white
12
vascular
9
sporadic genetic
8
cerebral small
8
small vessel
8
area product
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!