Aqueous leaf extracts of are widely used because of their diuretic, natriuretic, antiurolithiatic, anti-inflammatory and antihypertensive properties. The major component of the extract is the flavonoid 4',5-dihydroxy-6,7-methylenedioxyflavonol-3--α-L-rhamnopyranosyl-(1→2)-β-D-xylopyranoside, but it is not known if this compound is responsible for the biological activity. The objective of this work is to develop effective tools that allow predicting the possible activity of the flavonoid aglycone as an inhibitor of metalloproteases that regulate renal fluid excretion. First, a mathematical ligand-based classification model was developed, using an artificial intelligence and machine learning technique of support vector machines to find the relationship between chemical structure and biological activity. This showed good fit of the statistical parameters with an accuracy greater than 90%, offering information of the flavonoid activity. Subsequently, the flavonoid aglycone was docked to the active site of the enzymes thermolysin (PDB: 6YMS), angiotensin-converting enzyme (PDB: 6TT4) and neprilysin (PDB: 6SUK) using the Extra Precision glide method (Glide-XP), showing conformations with binding energies lower than -5 Kcal/mol. In this study, possible interactions were determined at the catalytic site, where the coordination of negatively charged pharmacophoric groups with the zinc atom of these enzymes is observed. Finally, a preliminary evaluation was carried out using a diuresis-natriuresis model with sodium quantification in urine which revealed good activity profiles. These results are in correspondence with the ethnopharmacological use of the plant as a diuretic-natriuretic and for the treatment of hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2024.2426075 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:
Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.
View Article and Find Full Text PDFJCI Insight
January 2025
Medicine, Washington University School of Medicine, St. Louis, United States of America.
Hereditary angioedema is an autosomal dominant disorder caused by defects in C1-esterase inhibitor (C1-INH), resulting in poorly controlled activation of the kallikrein-kinin system and bradykinin overproduction. C1-INH is a heavily glycosylated protein in the serine protease inhibitor (SERPIN) family, yet the role of these glycosylation sites remains unclear. To elucidate the functional impact of N-glycosylation in the SERPIN domain of C1-INH, we engineered four sets consisting of 26 variants at or near the N-linked sequon (NXS/T).
View Article and Find Full Text PDFPLoS One
January 2025
Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia.
Topological indices are crucial tools for predicting the physicochemical and biological features of different drugs. They are numerical values obtained from the structure of chemical molecules. These indices, particularly the degree-based TIs are a useful tools for evaluating the connection between a compound's structure and its attributes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!