Identifying winner-takes-all emergence in random nanowire networks: an inverse problem.

Phys Chem Chem Phys

Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.

Published: November 2024

Random nanowire networks (NWNs) are interconnects that enable the integration of nanoscopic building blocks (the nanowires) in a disorganized fashion, enabling the study of complex emergent phenomena in nanomaterials and built-in fault-tolerant processing functionalities; the latter can lead to advances in large-scale electronic devices that can be fabricated with no particular array/grid high-precision pattern. However, when various nanowires are assembled to form an intricate network, their individual features are somehow lost in the complex NWN frame, in line with the complexity hallmark "the whole differs from the sum of the parts". Individual nanowire materials and geometrical features can only be inferred indirectly by attempting to extract information about their initial conditions from a response function measurement. In this work, we present a mathematical framework that enables inference of the intrinsic properties of highly complex/intricate systems such as random NWNs in which information about their individual parts cannot be easily accessed due to their network formation and dynamical conductance behaviour falling in the category of memristive systems. Our method, named misfit minimization, is rooted in nonlinear regression supervised learning approaches in which we find the optimum parameters that minimize a cost function defined as the square least error between conductance evolution curves taken for a target NWN system and multiple configurational NWN samples composing the training set. The optimized parameters are features referent to the target NWN system's initial conditions obtained in an inverse fashion: from the response output function, we extract information about the target system's initial conditions. Accessing the nanowire individual features in a NWN frame, as our methodology allows, enables us to predict the conduction mechanisms of the NWN subjected to a current input source; these can be a "winner-takes-all" energy-efficient scheme using a single conduction pathway composed of multiple nanowires connected in series or multiple parallel conduction pathways. Predicting the conduction mechanism of complex and dynamical systems such as memristive NWNs is critical for their use in next-generation memory and brain-inspired technologies since their memory capability relies on the creation of such pathways activated and consolidated by the input current signal.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp03242jDOI Listing

Publication Analysis

Top Keywords

initial conditions
12
random nanowire
8
nanowire networks
8
individual features
8
nwn frame
8
target nwn
8
system's initial
8
nwn
6
identifying winner-takes-all
4
winner-takes-all emergence
4

Similar Publications

Background: Resilience refers to the ability to adapt or recover from stress. There is increasing appreciation that it plays an important role in wholistic patient-centered care and may affect patient outcomes, including those of orthopaedic surgery. Despite being a focus of the current orthopaedic evidence, there is no strong understanding yet of whether resilience is a stable patient quality or a dynamic one that may be modified perioperatively to improve patient-reported outcome scores.

View Article and Find Full Text PDF

Background: The prevalence of stroke is high in both males and females, and it rises with age. Stroke often leads to sensor and motor issues, such as hemiparesis affecting one side of the body. Poststroke patients require torso stabilization exercises, but maintaining proper posture can be challenging due to their condition.

View Article and Find Full Text PDF

Purpose: To provide updated guidance regarding neoadjuvant chemotherapy (NACT) and primary cytoreductive surgery (PCS) among patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer (epithelial ovarian cancer [EOC]).

Methods: A multidisciplinary Expert Panel convened and updated the systematic review.

Results: Sixty-one studies form the evidence base.

View Article and Find Full Text PDF

Purpose: To assess if drusen volume can serve as structural clinical outcome marker in Malattia Leventinese (ML), and to evaluate whether cones or rods are more affected by its progression, using multimodal imaging and mesopic and two-color scotopic microperimetry.

Methods: This was a prospective monocentric cross-sectional cohort study of participants with genetically confirmed ML. Participants were classified according to morphology.

View Article and Find Full Text PDF

Cardiac amyloidosis: when to suspect and how to confirm.

J Cardiovasc Med (Hagerstown)

February 2025

Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste.

Diagnosing cardiac amyloidosis (CA) is challenging because of its phenotypic heterogeneity, multiorgan involvement requiring interaction among experts in different specialties and subspecialties, lack of a single noninvasive diagnostic tool, and still limited awareness in the medical community. Missing or delaying the diagnosis of CA may profoundly impact on patients' outcomes, as potentially life-saving treatments may be omitted or delayed. The suspicion of CA should arise when "red flags" for this condition are present, together with increased left ventricular wall thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!