Purpose: The complex signal decay during the transient FLASH MRI readout can lead to artifacts in magnitude and phase images. We show that target-driven optimization of individual RF flip angles and phases can realize near-ideal signal behavior and mitigate artifacts.

Methods: The differentiable end-to-end optimization framework MR-zero is used to optimize RF trains of the FLASH sequence. We focus herein on minimizing deviations from the ideally spoiled signal by using a mono-exponential Look-Locker target. We first obtain the transient FLASH signal decay substructure, and then minimize the deviation to the Look-Locker decay by optimizing the individual (i) flip angles, (ii) RF phases, and (iii) flip angles and RF phases. Comparison between measurement and simulation is performed using Pulseq in 1D and 2D.

Results: We were able to reproduce the complex substructure of the transient FLASH signal decay. All three optimization objectives can bring the real FLASH signal closer to the ideal case, with best results when both flip angles and RF phases are adjusted jointly. This solution outperformed all tested conventional quadratic RF cyclings in terms of (i) matching the Look-Locker target signal, (ii) phase stability, (iii) point spread functions ideality, (iv) robustness against parameter changes, and (v) magnitude and phase image quality. Other target functions for the signal could as well be realized, yet their response is not as general as for the Look-Locker target and needs to be optimized for a specific context.

Conclusion: Individual flip angle and RF phase optimization improves the transient signal decay of FLASH MRI sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680739PMC
http://dx.doi.org/10.1002/mrm.30318DOI Listing

Publication Analysis

Top Keywords

signal decay
20
flip angles
16
angles phases
16
transient flash
12
individual flip
12
look-locker target
12
flash signal
12
signal
10
transient signal
8
flash mri
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!