Prussian blue analogues (PBAs) are a highly tunable family of materials with properties suitable for a wide variety of applications. Although their straightforward aqueous synthesis allows for the facile preparation of a diverse set of compositions, the use of water as the solvent has hindered the preparation of specific compositions with highly sought-after properties. A typical example is Cr[Cr(CN)]: its predicted strong magnetic interactions have motivated many attempts at its synthesis but with limited success. The lack of control over vacancies, crystallinity, and the oxidation state has prevented the experimental validation of its theoretical magnetic properties. Here, we report the nonaqueous synthesis of vacancy-suppressed, nanocrystalline chromium hexacyanochromate. The control over vacancies and the oxidation state leads to stronger magnetic interactions with a markedly increased absolute Weiss temperature (Θ = -836(6) K) and magnetic ordering temperature of (240 ± 10) K. Our results challenge the notion of the solvent as merely reaction medium and introduce a pathway for exploring moisture- and air-sensitive PBA compositions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615938 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.4c03856 | DOI Listing |
Chem Asian J
January 2025
Indian Institute of Technology Guwahati, Department of Chemistry, Department of Chemistry, 781039, Guwahati, INDIA.
Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.
The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Institute of Forestry and Engineering, Estonian University of Life Sciences, 51014, Tartu, Estonia.
In this work, a comparison of the photocatalytic activity of free-standing Cu-based nanoparticle mixtures and spin-coated nanoparticle films under visible-light radiation is conducted. Herein, CuO, CuO-Cu, CuO-CuN-Cu, and CuN-Cu nanoparticle mixtures were successfully synthesized by a non-aqueous sol-gel route and then deposited on a glass substrate by spin-coating. The surface chemistry of the nanoparticles studied by X-ray photoelectron spectroscopy (XPS) allowed elucidating the nanoparticle synthesis mechanism.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Polym Chem
December 2024
Polymer Science, Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!