The Easter mantle plume has produced one of the longest hotspot tracks in the Pacific Ocean. While previous studies have focused on the eastern side extending across the Nazca Plate, we use Ar/Ar isotopic and geochemical data to investigate the less explored western side around the Easter Microplate. We propose a dynamic model in which a deeper (600 km-depth), less buoyant mantle exerts a westward force on the East Pacific Rise (EPR), while a more buoyant plume region drives Easter hotspot volcanism and a localised acceleration in seafloor spreading. Our findings suggest that the Easter hotspot is the more focused surface expression of the most buoyant region of a vast, deep-seated mantle plume extending from the Pacific Large Low Shear Velocity Province (LLSVP). This challenges the traditional view of hotspots as isolated phenomena and suggests they are part of broader LLSVP-related mantle structures. Our results imply a more intricate, large-scale relationship between hotspots, mantle plumes, spreading ridges, and mantle dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570642PMC
http://dx.doi.org/10.1038/s41467-024-54115-2DOI Listing

Publication Analysis

Top Keywords

mantle plume
12
easter mantle
8
east pacific
8
pacific rise
8
easter hotspot
8
mantle
7
easter
5
synchronous motion
4
motion easter
4
plume
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!