Potential source contribution function coupled with mass spectrometry detection to identify source of atmospheric polyethylene terephthalate.

Environ Pollut

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • - The study emphasizes the importance of identifying sources of atmospheric microplastics (MPs) for creating effective pollution mitigation strategies using a method called Potential Source Contribution Function (PSCF) analysis, which offers a more thorough understanding than basic methods like wind direction tracking.
  • - Researchers collected hourly samples of suspended particles and measured the concentrations of polyethylene terephthalate (PET) in the atmosphere, finding an average concentration of 112.9 ng/m³.
  • - The findings reveal that atmospheric PET primarily comes from both dry farmlands and residential areas, with urban PET sources differing from those of total suspended particles (TSP), signifying the effectiveness of PSCF for identifying specific sources of atmospheric PET.

Article Abstract

Source identification of atmospheric microplastics (MPs) is crucial for the development of mitigation policies. Compared with wind directions or backward trajectories of air masses, the potential source contribution function (PSCF) analysis identifies more comprehensive sources of atmospheric particles. However, conducting PSCF analysis requires hourly pollutant concentration data, which cannot be met by the atmospheric MPs abundance obtained through commonly used methods. In this study, total suspended particles (TSP) samples were collected hourly and the concentrations of atmospheric polyethylene terephthalate (PET) were detected using a liquid chromatography-tandem mass spectrometry. Atmospheric concentrations of PET MPs were 112.9 ± 39.04 ng/m³ (average ± SD). Based on the hourly backward trajectories of air masses and the varied PET concentrations at the sampling site, potential sources of atmospheric PET were identified by PSCF analysis. The backward trajectory-based method indicates that atmospheric PET of the target site in this study primarily originates from dry farmlands. In comparison, both the residential areas and the dry farmlands were identified by PSCF as major sources of atmospheric PET at the receptor site. In contrast, both the backward-trajectory based method and PSCF analysis indicate that TSP mainly originates from the dry farmlands near the sampling site. This indicates that atmospheric PET in urban areas may have different sources from those of TSP, and PSCF is a suitable method for identifying sources of atmospheric PET.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125325DOI Listing

Publication Analysis

Top Keywords

atmospheric pet
20
pscf analysis
16
sources atmospheric
16
dry farmlands
12
atmospheric
11
potential source
8
source contribution
8
contribution function
8
mass spectrometry
8
atmospheric polyethylene
8

Similar Publications

Potentially toxic elements (PTEs) and microplastics (MPs) in the atmosphere raise widespread apprehension due to their association with the ecosystem and public health. The accumulation of airborne MPs and PTEs was analyzed in leaves, and the Pollution Index (PI) was calculated along an industrial, residential, and rural gradient in Bangladesh. Only polyethylene terephthalate (PET) was found in the highest concentration in industrial areas compared to other areas.

View Article and Find Full Text PDF

Design optimization of a 1-D array of stemless plastic scintillation detectors.

Med Phys

January 2025

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.

Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are one of the major collection points of microplastics (MPs). The MPs in influents and effluents of WWTPs were assessed for three cities on the southern coast of the Caspian Sea in the winter and spring seasons. The MP removal rate of WWTPs ranged between 71.

View Article and Find Full Text PDF

Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input.

View Article and Find Full Text PDF

Introduction: Older adults are a heterogeneous group, and their care experience preferences are likely to be diverse and individualized. Thus, the aim of this study was to identify categories of older adults' care experience preferences and to examine similarities and differences across different age groups.

Methods: The initial categories of older adults' care experience preferences were identified through a qualitative review of narrative text (n = 3134) in the ADVault data set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!