A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New Ti/CNT/CNT-Ce-PbO anode synergy peroxymonosulfate activation for efficiently electrocatalytic degradation of p-aminobenzoic acid. | LitMetric

New Ti/CNT/CNT-Ce-PbO anode synergy peroxymonosulfate activation for efficiently electrocatalytic degradation of p-aminobenzoic acid.

Environ Res

Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping, 136000, China; College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping, 136000, China. Electronic address:

Published: January 2025

Increased levels of p-aminobenzoic acid in aquatic environments, primarily utilized as UV filter in sunscreens, poses a serious threat to human and ecosystem health, while there is a dearth of exhaustive researches pertaining to the efficient and cost-effective elimination of p-aminobenzoic acid. Herein, a Ti/SnO-Sb/CNT-α-PbO/CNT-Ce-β-PbO, referred to Ti/CNT/CNT-Ce-PbO electrode was constructed by incorporating CNTs into the middle layer of PbO electrode, and simultaneously doping CNTs and Ce in the active layer. A series of tests signify that the target electrode is successfully fabricated, which exhibits higher particle density and smaller particle size, as well as exceptional degradation performance for p-aminobenzoic acid with a degradation rate of 99.7% within 30 min coupling with peroxymonosulfate activation. The optimal degradation performance was observed at a PMS dosage of 0.07 g, NaSO concentration of 0.05 mol L, current density of 120 mA cm, and initial pH value of 6.94. Capture experiments, electron spin resonance test, liquid chromatography-mass spectrometry analysis, toxicity assessment and theoretical calculation were performed to clarify the main activate radicals, degradation pathways and intermediate toxicity. This study provides a new anode material, and conducted the first exploration of electrocatalysis integrating peroxymonosulfate activation for degradation p-aminobenzoic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120383DOI Listing

Publication Analysis

Top Keywords

p-aminobenzoic acid
20
peroxymonosulfate activation
12
degradation p-aminobenzoic
8
degradation performance
8
degradation
6
p-aminobenzoic
5
acid
5
ti/cnt/cnt-ce-pbo anode
4
anode synergy
4
synergy peroxymonosulfate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!