The present study has developed a novel, eco-friendly method for the modification of potato starch by incorporating ultrasonic pretreatment, enzymatic hydrolysis, and oxidation with hydrogen peroxide. The technical parameters of the modification were optimized through response surface methodology to give optimum conditions. The results showed that the combination of ultrasound and enzyme disrupted the microstructure and crystalline structure of the starch granules, thus allowing for easier penetration of modifying agents and increasing the reactivity of the starch. Additionally, this starch exhibited higher thermal stability, with improved rheological properties compared to conventionally modified starch. This combined modification approach further reduced agglomeration of starch granules usually achieved by single-agent modification and increased the solubility of starch. Thus, this eco-friendly method is effective for the modification of potato starch.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137753DOI Listing

Publication Analysis

Top Keywords

starch
9
starch combined
8
ultrasound enzyme
8
eco-friendly method
8
modification potato
8
potato starch
8
starch granules
8
modification
5
comparative study
4
study structure
4

Similar Publications

This study aimed to investigate the impact of adding aroeira leaf extract (Schinus terebinthifolius Raddi) to a yam starch film matrix, focusing on the development of potentially active films and the evaluation of their physicochemical, mechanical, optical, and antioxidant properties. Films were produced using the casting method with varying extract concentrations (0, 3, 6, 12, and 15 %), yam starch (2 %), and glycerol (1 %). The antioxidant properties were analyzed by determining the total phenolic content, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging, ferric reducing power, and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical elimination, which revealed a significant increase in antioxidant properties as the extract concentration increased.

View Article and Find Full Text PDF

Evaluation of the actinia-shaped composite coagulant for removal of algae in water: Role of charge density.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

A series of novel cationic modified actinia-shaped composite coagulant (AMS-C), with similar tentacle length and distribution but different charge density (CD), was successfully designed and fabricated by combination of a cationic graft starch and attapulgite (ATP). AMS-C shows a high efficiency in coagulative removal of Microcystis aeruginosa from water over a wide pH range. The algae-harvesting efficiency of optimized AMS-C can reach to 92.

View Article and Find Full Text PDF

Extraction and Characterization of Inulin-Like Fructans from Hydroponically Grown Stevia rebaudiana Roots for Food Applications.

Plant Foods Hum Nutr

January 2025

Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná, 87020-900, Brazil.

Stevia rebaudiana is a plant native to South America known for producing steviol glycosides and fructans used in low-calorie and functional foods. This study aimed to cultivate and isolate inulin from hydroponically grown S. rebaudiana roots.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!