In neurodegenerative diseases (NDDs), disruptions in protein homeostasis hinder the clearance of misfolded proteins, causing the formation of misfolded protein oligomers and multimers. The accumulation of these abnormal proteins results in the onset and progression of NDDs. Removal of non-native protein is essential for cell to maintain proteostasis. In recent years, targeted protein degradation (TPD) technologies have become a novel means of treating NDDs by removing misfolded proteins through the intracellular protein quality control system. The TPD strategy includes the participation of two primary pathways, namely the ubiquitin-proteasome pathway (for instance, PROTAC, molecular glue and hydrophobic tag), and the autophagy-lysosome pathway (such as LYTAC, AUTAC and ATTEC). In this review, we systematically present the mechanisms of various TPD strategies employed for neurotoxic protein degradation in NDDs. The article provides an overview of the design, in vitro and in vivo anti-NDD activities and pharmacokinetic properties of these small-molecular degraders. Finally, the advantages, challenges and perspectives of these TPD technologies in NDDs therapy are discussed, providing ideas for further development of small molecule degraders in the realm of NDDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2024.102584 | DOI Listing |
Cell Biochem Biophys
December 2024
Department of Biomaterials/Osaka Dental University, 8-1, Kuzuhahanazono-cho, Osaka, 573-1121, Japan.
Elastic fibers of the internal and external elastic laminae maintain blood vessel shapes. Impairment of smooth muscle cell function leads to vascular disease development. F-box and WD-40 domain-containing protein 2 (FBXW2) is associated with elastic fibers and osteocalcin expression for bone regeneration in the periosteum.
View Article and Find Full Text PDFACS Nano
December 2024
Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China.
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.
View Article and Find Full Text PDFJ Med Chem
December 2024
Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
Rearranged during transfection (RET) kinase is a validated therapeutic target for various cancers characterized by RET alterations. Although two selective RET inhibitors, selpercatinib and pralsetinib, have been approved by the FDA, acquired resistance through solvent-front mutations has been identified rapidly. Developing proteolysis targeting chimera (PROTAC) targeting RET mutations offers a promising strategy to combat drug resistance.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFJ Med Food
December 2024
Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.
Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!