Background And Objectives: Sevoflurane (Sev) exposure may provoke deleterious effects on cognitive function. This study explores the mechanism of long non-coding RNA growth arrest specific transcript 5 (LncRNA GAS5) in Sev-induced cognitive dysfunction in neonatal rats.
Methods: Cognitive dysfunction was induced by Sev anesthesia in 7-day-old Sprague-Dawley rats, followed by open field test, novel object recognition, radial arm maze, and Morris water maze to evaluate cognitive function of rats. The subcellular localization of LncRNA GAS5 was detected by nucleocytoplasmic isolation assay, and the binding of miR-137 to LncRNA GAS5 and NKCC1 was detected by RNA pull down and dual-luciferase reporter assay, respectively. Adenovirus-packaged sh-LncRNA GAS5 was injected into the hippocampus of Sev rats. qRT-PCR and Western blot were performed to detect the expressions of LncRNA GAS5, miR-137 and NKCC1 in the hippocampus of rats.
Results: Sev anesthesia led to cognitive dysfunction in neonatal rats. LncRNA GAS5 was highly expressed in Sev rats, and inhibition of LncRNA GAS5 alleviated Sev-induced cognitive dysfunction in rats. LncRNA GAS5 targeted miR-137, and miR-137 inhibited NKCC1 expression. Knockdown of miR-137 or overexpression of NKCC1 reversed the effect of LncRNA GAS5 inhibition on cognitive dysfunction in sev rats.
Conclusion: LncRNA GAS5 promotes Sev-induced cognitive dysfunction in neonatal rats via the miR-137/NKCC1 axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.braindev.2024.10.003 | DOI Listing |
Curr Oncol Rep
January 2025
Department of Molecular Oncology, Cancer Institute (WIA), Chennai, TN, India.
Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.
Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).
Genes (Basel)
December 2024
Department of Medicine, Beijing Zhongwei Research Center, Biological and Translational Medicine, Beijing 100161, China.
Ischemic stroke is a serious cerebrovascular disease, highlighting the urgent need for reliable biomarkers for early diagnosis. Recent reports suggest that long non-coding RNAs (lncRNAs) can be potential biomarkers for ischemic stroke. Therefore, our study seeks to investigate the potential diagnostic value of lncRNAs for ischemic stroke by analyzing existing research.
View Article and Find Full Text PDFGene
January 2025
Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India.
Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches.
View Article and Find Full Text PDFBiochem Genet
December 2024
College of Pharmacy, The Islamic University, Najaf, Iraq.
The long non-coding RNA Growth Arrest-Specific 5 (GAS5) is pivotal in modulating key signaling pathways by functioning as a molecular sponge for microRNAs (miRNAs). GAS5 is notably recognized for its antitumor properties, primarily through its ability to sequester oncogenic miRNAs, thereby influencing critical pathways such as p53, Wnt/β-catenin, and PI3K/Akt, all of which are integral to cell proliferation, apoptosis, and metastasis. The disruption of GAS5-miRNA interactions has been implicated in various malignancies, reinforcing its potential as both a biomarker and a therapeutic target.
View Article and Find Full Text PDFCancer Control
December 2024
Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
Background And Aims: So far, long noncoding RNAs (lncRNAs) signatures in acute myeloid leukemia (AML) are poorly understood. The present study aims to explore the prognostic significance of eleven cancer-related lncRNAs in bone marrow (BM) samples from adult Egyptian AML patients.
Materials And Methods: In this study, we analyzed eleven lncRNAs using the qRT-PCR assay in the bone marrow (BM) of 79 de novo AML adult patients before receiving any therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!