Direct seawater electrolysis greatly alleviates the shortage of freshwater resources, emerging as a promising approach for hydrogen production. Unfortunately, the slow kinetics of oxygen evolution reaction (OER) and the complex seawater environment, especially the chloride oxidation reaction (ClOR), pose significant challenges for the design of direct seawater electrolysis catalysts. For the sake of enhancing corrosion resistance to chloride ions (Cl), an alkaline environment is settled for increasing the potential difference between OER and competitive ClOR. NiFe-LDH has been recognized as a benchmark catalyst in alkaline environment owing to its unique advantages. However, in strongly alkaline environment, the deposition of Mg(OH) and Ca(OH) at the cathode limits the overall efficiency of direct seawater electrolysis. In this study, we have investigated the underlying effect of four different interlayer anions (PO, SO, CO, and NO) on the OER activity, selectivity, and pH application range of NiFe-LDH using density functional theory. Furthermore, we have explored the intrinsic correlations between electronic structure and catalytic performance. Our results confirm that the interlayer anions play a favorable role in promoting OER activity. Among them, NiFe-LDH with PO remarkably outperforms the other interlayer anions in terms of OER activity and selectivity, reducing the OER overpotential (η) to 0.29 V and overcoming the limitations associated with high pH conditions. Most importantly, there is a linear relationship between η and the charge transferred from the interlayer anion to the catalyst surface (ΔQ), implying that the interlayer anions are able to regulate the catalytic activity through essential charge transfer. This study provides theoretical insights into the design and development of advanced OER catalysts that can simultaneously suppress ClOR for direct seawater electrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2024.11.069 | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Commercialization of lithium-sulfur (Li-S) batteries is largely limited by polysulfide shuttling and sluggish kinetics. Herein, 2D nanochannel interlayer composed of alternatively-stacked porous silica nanosheets (PSN) and TiCT-MXene are developed. The 2D nanochannels with selective cation transport characteristics facilitate lithium ion rapid transport, while reject the translocation of polysulfide anions across the separator.
View Article and Find Full Text PDFChemSusChem
January 2025
Guangxi Normal University, Chemistry and Pharmaceutical Sciences, CHINA.
Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China.
Elevated concentrations of antimony (Sb) in the environment originating from natural and anthropogenic sources are of global concern due to their high toxicity and mobility. Notably, the formation of thioantimony species (e.g.
View Article and Find Full Text PDFSmall
January 2025
Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!