This paper investigates the impacts of winter maintenance operations (WMO) on road safety under different weather conditions using connected vehicle data. In particular, the impacts of WMO on incident-induced delays (IID) and harsh braking events are highlighted, representing the influence on traffic flow and vehicle stability, respectively. Taking advantage of emerging connected vehicle data, the impacts of WMO on IIDs and vehicle harsh braking events are estimated. Data analysis revealed that WMO plays an important role in reducing the mean IID and the average number of harsh braking events, particularly when roads were covered with ice, frost, slush, or snow in snowy weather. The presence of WMO reduced the mean IID from 145.93 veh-h to 57.70 veh-h, representing a 60% decrease, and the number of harsh braking events from 3.58 cases per crash to 2.90 cases per crash, making a 19% reduction. Last, the multiple linear regression (MLR) model highlights that WMO effectively reduces IID by 23.36 veh-h. In addition, the MLR model indicates that IID is influenced by traffic volume, driving behaviors immediately before a crash, crash severity, road weather conditions, with more severe crashes and worse pavement conditions contributing to longer delays. These findings suggest that the WMO can improve road safety by reducing incident-induced delays and improving traffic stability in winter weather conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2024.107837 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!