The aim of this study was to load 4-farnesyloxycoumarin (4-FLC) in nanoliposomes (4-FLC-LNPs) and evaluate its anti-cancer and anti-metastatic effects. 4-FLC-LNPs were synthesized using a combination of lecithin-cholesterol-polyethylene glycol. The physicochemical properties were evaluated using DLS, FTIR, and microscopy methods. The toxicity against breast cancer (MCF-7), prostate cancer (PS3), pancreatic cancer (PANC), gastric cancer (AGS), and normal cell lines (HUVEC) was evaluated using the MTT assay. Fluorescent staining and flow cytometry were used to assess the occurrence of apoptosis. Molecular analysis methods were used to study the apoptosis and metastasis effects of these nanoliposomes. The antioxidant power of 4-FLC-LNPs was measured using the ABTS and DPPH free radicals methods. 4-FLC-LNPs exhibit a spherical morphology, with an average size of 57.43 nm, a polydispersity index of 0.29, and a zeta potential of -31.4 mV. They demonstrate an encapsulation efficiency of 82.4% for 4-FLC. The IC50 value of 4-FLC-LNPs against the breast cancer cell line was reported as the most sensitive, at approximately 60 μg/mL. ABTS and DPPH results were reported at approximately 30 µg/mL. The inductive effects of nanoliposomes on the apoptosis process were confirmed by an increase in the number of apoptotic cells, as well as the arrest of cells in various phases of cell growth. The increased expression of BAX and decreased expression of Bcl-2, MMP-2, and MMP-9 confirmed the pro-apoptotic and anti-metastatic effects of 4-FLC-LNPs. These finding validate the therapeutic potential of 4-FLC-LNPs, which may be utilized in preclinical studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08982104.2024.2428168 | DOI Listing |
Toxicol Appl Pharmacol
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Breast cancer (BC) is a leading cause of cancer-related mortality among women worldwide, with incidence rates rising globally. Urolithin B (UB), a bioactive metabolite of ellagic acid, has demonstrated promising anticancer effects in various cancer models. This study aimed to evaluate the effects of UB on the growth, angiogenesis, and metastasis of BC cells using both in vivo and in vitro approaches.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
Correction for '(Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe' by So-Young Chun , , 2025, https://doi.org/10.1039/D4CC05907G.
View Article and Find Full Text PDFActa Biomater
December 2024
Lingang Laboratory, Shanghai 200031, China. Electronic address:
Triple-negative breast cancer (TNBC) has been a clinical challenge due to its high recurrence and metastasis rates. Chemotherapy remains the primary treatment for TNBC after surgery ablation, but it lacks targeted specificity and causes side effects in normal tissues. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is significantly expressed in TNBC cells, and small interference RNA (siRNA) targeting ROR1 can effectively suppress ROR1 gene expression, thereby inhibiting proliferation and metastasis.
View Article and Find Full Text PDFBiomed Rep
February 2025
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Cholangiocarcinoma (CCA) is an aggressive cancer of the bile duct epithelium. Anthocyanins are water-soluble flavonoids that contribute to the color of fruits and pigmented rice. Black rice bran is rich in anthocyanin pigments and exhibits certain health benefits, including anticancer activity; however, the effect of black rice bran-derived anthocyanins (BBR-M-10) on CCA progression remains unclear.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, U.P, 201310, India.
This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!