AI Article Synopsis

  • This study investigates how a mutation in the MyD88 protein affects immune responses and cell health in mice, revealing issues similar to those in humans with NEMO deficiencies.
  • The mutation leads to lower MyD88 protein levels, increased oxidative stress, and dysfunctional mitochondria in macrophages, resulting in heightened susceptibility to apoptosis, especially when treated with ibrutinib.
  • The research highlights the critical role of MyD88 in activating NF-κB to protect macrophages from premature death and suggests that adjusting MyD88 levels could be a potential approach for treating MyD88-related lymphomas.

Article Abstract

Various signaling pathways are essential for both the innate immune response and the maintenance of cell homeostasis, requiring coordinated interactions among them. In this study, a mutation in the caspase-1 recognition site within MyD88 abolished inflammasome-dependent negative regulation, causing phenotypic changes in mice with some similarities to human NEMO-deficiencies. The MyD88 mutation reduced MyD88 protein levels and colon inflammation in DSS-induced colitis mice but did not affect cytokine expression in bone marrow-derived macrophages (BMDMs). However, compared to MyD88 counterparts, MyD88 BMDMs had increased oxidative stress and dysfunctional mitochondria, along with reduced prosurvival Bcl-xL and BTK expression, rendering cells more prone to apoptosis, exacerbated by ibrutinib treatment. NF-κB activation by lipopolysaccharide mitigated this sensitive phenotype. These findings underscore the importance of MyD88 signaling for NF-κB activation, protecting against macrophage premature apoptosis at resting state. Targeting MyD88 quantity rather than just its signaling could be a promising strategy for MyD88-driven lymphoma treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568545PMC
http://dx.doi.org/10.1186/s12964-024-01930-1DOI Listing

Publication Analysis

Top Keywords

myd88
8
myd88 protein
8
nf-κb activation
8
protein destabilization
4
destabilization mitigates
4
mitigates nf-κb-dependent
4
nf-κb-dependent protection
4
protection macrophage
4
macrophage apoptosis
4
apoptosis signaling
4

Similar Publications

CpG hypomethylation at proximal promoter and 5'UTR along with IL6 signaling loop associates with MYD88 upregulation in epithelial ovarian cancer.

Sci Rep

December 2024

Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.

MYD88 is an IL-6 primary response gene and, its upregulation of expression has been shown to be a poor prognostic factor in epithelial ovarian cancer (EOC). We investigated the effects of CpG methylation at the proximal promoter/5'UTR and IL-6/SP1/IRF1 signaling on upregulation of MYD88 and prognosis in EOC. We assessed CpG methylation at the proximal promoter/5'UTR of MYD88 using bisulfite sequencing/PCR in 103 EOC patients, 28 normal ovarian tissues and two EOC cell lines with differential expression of MYD88 and identified the impact of the level of CpG methylation on MYD88 upregulation by SP1/IRF1 with knockdown or blockade of IL-6.

View Article and Find Full Text PDF

Introduction: To evaluate the impact of TACI fusion protein (TACI-Ig) on IgA nephropathy (IgAN) in rats, and to explore its mechanism and relationship with TLR4/MyD88/NF-κB pathway.

Method: Sprague Dawley(SD)rats were divided into six groups: control, model, TACI-Ig low dose (TACI-Ig-L), medium dose (TACI-Ig-M), high dose (TACI-Ig-H), and prednisone acetate (PAT) group. The control group and model group received physiological saline injections, while the TACI-Ig groups were administered doses of 7.

View Article and Find Full Text PDF

Background: Bunge [Fabaceae; ] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym.

View Article and Find Full Text PDF

Endothelial CD38-induced endothelial-to-mesenchymal transition is a pivotal driver in pulmonary fibrosis.

Cell Mol Life Sci

December 2024

National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.

Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence.

View Article and Find Full Text PDF

A soluble TLR5 is involved in the flagellin-MyD88-mediated immune response via regulation rather than activation in large yellow croaker (Larimichthys crocea).

Comp Biochem Physiol B Biochem Mol Biol

December 2024

State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China. Electronic address:

Toll-like receptor 5 (TLR5) plays a crucial role in the immune response through recognizing bacterial flagellin. Some teleosts possess two forms of TLR5, including a canonical membrane TLR5 (TLR5M) ortholog and a piscine soluble TLR5 (TLR5S). In this report, the full-length cDNA sequences of Larimichthys crocea TLR5M (LcTLR5M) and TLR5S (LcTLR5S) were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!