It is not currently possible for an infrared camera to see through a hot window. The window's own blinding thermal emission prevents objects on the other side from being imaged. Here, we demonstrate a path to overcoming this challenge by coating a hot window with an asymmetrically emitting infrared metasurface whose specially engineered imaginary index of refraction produces an asymmetric spatial distribution of absorption losses in its constituent nanoscale resonators. Operating at 873 K, this metasurface-coated window suppresses thermal emission towards the camera while being sufficiently transparent for thermal imaging, doubling the thermal imaging contrast when compared to a control window at the same temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569156 | PMC |
http://dx.doi.org/10.1038/s44172-024-00316-y | DOI Listing |
R Soc Open Sci
January 2025
Sustainable Design Group, Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.
This study proposes a methodology and a proof of concept to target and prioritize mass retrofitting of residential buildings in the UK using open building datasets that combine fabric energy efficiency and fuel poverty to meet the net-zero targets. The methodological framework uses a series of multi-variate statistical and geospatial methods that consider urban, socio-economic and physical attributes. In addition, thermal imaging is implemented to provide insights at the building scale.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.
ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.
View Article and Find Full Text PDFAchiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Biomedical Engineering, University of Cincinnati, UC Bioscience Center, 3159 Eden Ave., Cincinnati, Ohio, 45221, UNITED STATES.
Ultrasound echo decorrelation imaging can successfully monitor and control thermal ablation of animal liver and tumor tissue ex vivo and in vivo. However, normal and diseased human liver has substantially different physical properties that affect echo decorrelation. Here, effects of human liver tissue condition on ablation guidance by three-dimensional echo decorrelation imaging are elucidated in experiments testing closed-loop control of radiofrequency ablation (RFA) in normal and diseased human liver tissue ex vivo.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
January 2025
From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
Background: Most patients undergoing breast surgery with free nipple grafts lose nipple erection (NE) function. This study aimed to evaluate the effect of nerve preservation and reconstruction with targeted nipple-areola complex reinnervation (TNR) on NE following gender-affirming mastectomy with free nipple grafting.
Methods: Patients undergoing gender-affirming mastectomy with free nipple grafts were prospectively enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!