NuSAP4 regulates chromosome segregation in Trypanosoma brucei by promoting bipolar spindle assembly.

Commun Biol

Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.

Published: November 2024

Faithful chromosome segregation in eukaryotes requires the assembly of a bipolar spindle and the faithful attachment of kinetochores to spindle microtubules, which are regulated by various spindle-associated proteins (SAPs) that play distinct functions in regulating spindle dynamics and microtubule-kinetochore attachment. The protozoan parasite Trypanosoma brucei employs evolutionarily conserved and kinetoplastid-specific proteins, including some kinetoplastid-specific nucleus- and spindle-associated proteins (NuSAPs), to regulate chromosome segregation. Here, we characterized NuSAP4 and its functional interplay with diverse SAPs in promoting chromosome segregation in T. brucei. NuSAP4 associates with the spindle during mitosis and concentrates at spindle poles where it interacts with SPB1 and MAP103. Knockdown of NuSAP4 impairs chromosome segregation by disrupting bipolar spindle assembly and spindle pole protein localization. These results uncover the mechanistic role of NuSAP4 in regulating chromosome segregation by promoting bipolar spindle assembly, and highlight the unusual features of mitotic regulation by spindle-associated proteins in this early divergent microbial eukaryote.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569230PMC
http://dx.doi.org/10.1038/s42003-024-07248-5DOI Listing

Publication Analysis

Top Keywords

chromosome segregation
24
bipolar spindle
16
spindle assembly
12
spindle-associated proteins
12
spindle
9
trypanosoma brucei
8
promoting bipolar
8
chromosome
6
segregation
6
nusap4
5

Similar Publications

Chromosomal aneuploidies are a major cause of developmental failure and pregnancy loss. To investigate the possible consequences of aneuploidy on early embryonic development in vitro, we focused on primed pluripotent stem cells that are relatable to the epiblast of post-implantation embryos in vivo. We used human induced pluripotent stem cells (iPSCs) as an epiblast model and altered chromosome numbers by treating with reversine, a small-molecule inhibitor of monopolar spindle 1 kinase (MSP1) that inactivates the spindle assembly checkpoint, which has been strongly implicated in chromosome mis-segregation and aneuploidy generation.

View Article and Find Full Text PDF

Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here we present a molecular network responsible for maintaining karyotype stability in the male mouse germline.

View Article and Find Full Text PDF

Background: Mitosis maintains a genome's genetic information in daughter cells by accurately segregating chromosomes. However, chromosome aberrations are common during early mammalian embryogenesis. Chromosomal abnormalities during the early stages of embryogenesis result in the formation of mosaic embryos, wherein cells with normal genomes coexist with cells exhibiting abnormal genomes.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the molecular mechanisms associated with chromosome segregation errors caused by intrinsic oxidative stress during in vitro oocyte maturation (IVM) using oocytes from -deficient (KO) mice.

Methods: Ovulated or in vitro matured cumulus-cells oocyte complexes (COCs) were collected from wild-type (WT) and KO mice and evaluated chromosome alignment, chromosome segregation, meiotic progression, and BUBR1 and REC8 protein expression levels.

Results: In 21% O IVM, the KO had significantly higher frequencies of chromosome misalignment and segregation errors compared to the WT, and they also reached Germinal Vesicle Break Down (GVBD) and M I stages peak earlier and showed a shorter M I stage residence time compared to the WT.

View Article and Find Full Text PDF

Mechanistic insights into pachymic acid's action on triple-negative breast Cancer through TOP2A targeting.

Sci Rep

January 2025

Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou City, No.199 Donggang West Road, 730000, Gansu Province, China.

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen and progesterone receptors, and lack of human epidermal growth factor receptor 2 (HER2) expression. Traditional Chinese medicine (TCM) has demonstrated promising efficacy in treating TNBC. This study explored the mechanisms of pachymic acid (PA) on TNBC by merging network pharmacology with experimental validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!