Model-based study of Yarrowia lipolytica cultivation on crude glycerol under different fermentation modes: Development of a membrane bioreactor process.

Bioresour Technol

Laboratory of Natural Resources and Renewable Energies, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Thessaloniki, Greece. Electronic address:

Published: February 2025

Batch fermentations of the wild type Yarrowia lipolytica MUCL 28849 were performed in a bench-top bioreactor to assess crucial operating conditions. A setup of carbon to nitrogen (mol/mol) ratio equal to 34, pH = 6.0 and 52 g/L of crude glycerol showed increased lipid production and complete glycerol consumption at t = 24 h, thus, selected for further process improvement. Α semi-continuous process was implemented, where a pH drop to 4.0 at 24 h, interrupted citric acid secretion without affecting lipid production. An in-situ membrane module was employed for membrane bioreactor fermentations, where yeast cells were successfully retained with minimum fouling. The membrane bioreactor fed-batch process, resulted in a high-cell-density culture reaching 49.8 g/L of dry biomass and 4.9 g/L of lipids. An unstructured model was developed and successfully simulated operation under all fermentation modes, distinguishing diverse physiological shifts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131773DOI Listing

Publication Analysis

Top Keywords

membrane bioreactor
12
yarrowia lipolytica
8
crude glycerol
8
fermentation modes
8
lipid production
8
model-based study
4
study yarrowia
4
lipolytica cultivation
4
cultivation crude
4
glycerol fermentation
4

Similar Publications

The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.

View Article and Find Full Text PDF

This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.

View Article and Find Full Text PDF

A novel, gelatinous, colony-forming, rod-shaped bacterial strain, designated IK01 was isolated from biofilms formed on the membrane surface of a sewage-treating membrane bioreactor (MBR). Strain IK01 produced gelatinous and almost transparent colonies at lower medium concentrations. Fourier transform infrared analysis of the gelatinous colony matrix showed that the matrix could be a biofilm substance.

View Article and Find Full Text PDF

Physicochemical properties and fermentation characteristics of a novel polysaccharide degraded from residues polysaccharide.

Food Chem X

December 2024

College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, PR China.

() residues polysaccharide (FVRP) is a high molecular weight polysaccharide with diverse bioactivities extracted from residues (FVR). However, high molecular weight polysaccharides have been shown to face significant challenges in crossing the cell membrane barrier, thereby limiting their absorption and application in the body. Therefore, an ultrasonic-assisted HO-Fe method was employed for the first time to degrade FVRP, resulting in the production of a new polysaccharide, FVRPF.

View Article and Find Full Text PDF

Comprehensive performance of a new-type hybrid membrane bioreactor applied to mainstream anammox process.

J Environ Manage

December 2024

Institute of Pollution Control and Environmental Health, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.

The new-type submerged granular sludge membrane bioreactor (S-GSMBR) was constructed by installing a membrane module inside an upflow anaerobic sludge blanket. S-GSMBR achieved the fast start-up (47 d) and long-term stable operation (133 d) of mainstream Anammox process as well as the effective control of membrane fouling. The maximum nitrogen removal rate and efficiency were 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!