Northeast China is an important food production base and plays a crucial role in national food security. However, the increase in salt-affected soils poses a challenge to agricultural production in this region. Plastic mulching is an effective technique for saline cropland improvement, and although it has increased crop yields in the short term, its long-term application may have introduced the problem of contamination by microplastics (MPs). The distribution of MPs in salt-affected cropland, along with the effects on soil nutrients, remains largely unknown. Accordingly, the presented research selected salt-affected cropland as the research object, after which MPs were quantified from 46 soil samples from currently mulched and unmulched fields. MPs abundance in the sampled soils ranging from 4.10 × 10∼1.50 × 10 particles per kilogram of dry soil. The detected MP polymers were mainly high-density polyethylene (46%), polypropylene (22%) and polyvinyl chloride (20%). The MP particles most commonly fell under the size ranges of 50∼100 μm (35%) and 100-200 μm (28%), both of which are small particle sizes. The most commonly detected MP shapes were film (34%) and fragment (31%). The mulched samples from salt-affected cropland generally showed higher soil nutrient contents than the unmulched samples. Moreover, MP abundance, type, size, and shape all demonstrated strong correlations with soil organic carbon and total nitrogen. MP type is a major factor determining soil nutrient content. Plastic mulching serves as an important source of MPs in salt-affected cropland, with these contaminants affecting nutrient content. Future research should be broader in scope and include ecological benefits and policy implications, with a view to optimizing the problem of MPs contamination due to mulching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.120376DOI Listing

Publication Analysis

Top Keywords

salt-affected cropland
16
nutrient content
12
plastic mulching
8
mps salt-affected
8
soil nutrient
8
soil
7
salt-affected
6
mps
6
cropland
5
microplastics influence
4

Similar Publications

Northeast China is an important food production base and plays a crucial role in national food security. However, the increase in salt-affected soils poses a challenge to agricultural production in this region. Plastic mulching is an effective technique for saline cropland improvement, and although it has increased crop yields in the short term, its long-term application may have introduced the problem of contamination by microplastics (MPs).

View Article and Find Full Text PDF

Exploring spatial and temporal symptoms of the freshwater salinization syndrome in a rural to urban watershed.

Sci Total Environ

October 2024

Department of Geography and the Environment, Villanova University, Villanova, PA 19085, United States of America. Electronic address:

The freshwater salinization syndrome (FSS), a concomitant watershed-scale increase in salinity, alkalinity, and major-cation and trace-metal concentrations, over recent decades, has been described for major rivers draining extensive urban areas, yet few studies have evaluated temporal and spatial FSS variations, or causal factors, at the subwatershed scale in mixed-use landscapes. This study examines the potential influence of land-use practices and wastewater treatment plant (WWTP) effluent on the export of major ions and trace metals from the mixed-use East Branch Brandywine Creek watershed in southeastern Pennsylvania, during the 2019 water year. Separate analysis of baseflow and stormflow subsets revealed similar correlations among land-use characteristics and streamwater chemistry.

View Article and Find Full Text PDF

Salinity decreases the contribution of microbial necromass to soil organic carbon pool in arid regions.

Sci Total Environ

June 2024

College of Ecology, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China. Electronic address:

Saline soils are widely distributed in arid areas but there is a lack of mechanistic understanding on the effect of salinity on the formation and biochemical composition of soil organic carbon (SOC). We investigated the effects of salinity on the accumulation of microbial necromass under natural vegetation and in cropland in salt-affected arid areas stretching over a 1200-km transect in northwest China. Under both natural vegetation and cropland, microbial physiological activity (indicated by microbial biomass carbon normalized enzymatic activity) decreased sharply where the electrical conductivity approached 4 ds m (a threshold to distinguish between saline and non-saline soils), but microbial biomass was only slightly affected by salinity.

View Article and Find Full Text PDF

The salt-affected soils national map of Greece was recently made available within the initiative of the Global Soil Partnership (GSP) of Food and Agriculture Organization of the United Nations FAO. The present study explores the development of higher resolution soil property maps included in this national scale product adopting a modified version of the FAO methodology and a logistic regression (LR) method based on ground and satellite data. Furthermore, it also investigates the correlation between saline soils and soil organic carbon (SOC) using geospatial analysis methods.

View Article and Find Full Text PDF

Identifying the eco-hydrological processes associated with water-salt dynamics is important for the sustainable management of water resources and eco-environmental systems in groundwater-dependent ecosystems, especially across different land use types in salt-affected oasis-desert ecosystems. In this study, a typical cropland-shelterbelt-desert site at the oasis-desert system in the Sangong River watershed of northwestern China was selected to investigate the spatio-temporal variations of water-salt dynamics using the Spearman rank correlation analysis and water/mass balance analysis, and to identify the response of vegetation dynamics to water-salt variations based on a model framework for vegetation-salinity-groundwater interactions, within and among these land uses during crop growth period (CGP: April 1-June 28, 2018) and non-crop-growth period (Non-CGP: June 29-October 31, 2018). Results showed that the soil water content (SWC) and soil electrical conductivity (SEC) had clear vertical stratification, horizontal transition and seasonal fluctuation characteristics during both CGP and Non-CGP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!