Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Copper (Cu) is an important metal pollutant commonly found in aquatic environment owing to its inherent bioaccumulation and biomagnification potentials and long-term persistence in environmental compartments. The application of novel fabricated copper nanoparticles (Cu-NPs) has led to cytotoxicity in aquatic animals. However, the differences in underlying toxicity mechanisms between Cu-NPs and waterborne Cu (such as CuSO) remain unelucidated. Herein, the mechanisms underlying the CuSO/Cu-NPs-mediated perturbation of the hepatopancreatic mitochondrial function at different concentrations were investigated and compared. After exposing Eriocheir sinensis to 0 (control), 5, 50, and 500 μg/L CuSO and 10 μg/L Cu-NPs for 21 days, hepatopancreases were retrieved. The results revealed that Cu-NPs or CuSO (50 and 500 μg/L) induced ultrastructural damage following a time-dose effect, as indicated by swelling and degeneration of the lumen of hepatic tubules. Excess CuSO or Cu-NPs exposure decreased the antioxidative capacity and led to the over-accumulation of mitochondrial ROS. Moreover, the mitochondrial membrane potential (ΔΨm) was reduced and apoptosis induced. Additionally, both CuSO and Cu-NPs increased the numbers of mitophagosomes and the mRNA and protein levels of LC3B, and triggered mitophagy through PRKN-independent pathway; however, mostly the BNIP3L/Beclin1 pathway was involved in excess CuSO-induced mitophagy. Altogether, this study provides a basis for exploring Cu-mediated potential mitochondrial autophagy activation mechanisms and their effects on environmental toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177576 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!