In nature, organisms experience combinations of stressors. However, laboratory studies use batch cultures, which simplify reality and focus on population-level responses to individual stressors. In recent years, bacterial stress responses have been examined with single-cell resolution using microfluidics. Here, we use a microfluidic approach to simultaneously provide a physical stressor (shear flow) and a chemical stressor (HO) to the human pathogen Pseudomonas aeruginosa. By treating cells with levels of flow and HO that commonly co-occur in human host tissues, we discover that previous reports significantly overestimate the HO levels required to block bacterial growth. Specifically, we establish that flow increases HO effectiveness 50-fold, explaining why previous studies lacking flow required much higher concentrations. Using natural HO levels, we identify the core HO regulon, characterize OxyR-mediated dynamic regulation, and demonstrate that multiple HO scavenging systems have redundant roles. By examining single-cell behavior, we serendipitously discover that the combined effects of HO and flow block pilus-driven surface migration. Thus, our results counter previous studies and reveal that natural levels of HO and flow synergize to restrict bacterial motility and survival. By studying two stressors at once, our research highlights the limitations of oversimplifying nature and demonstrates that physical and chemical stress can combine to yield unpredictable effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652226 | PMC |
http://dx.doi.org/10.1016/j.cub.2024.10.029 | DOI Listing |
Clin Transl Oncol
January 2025
Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Zoological Survey of India, Kolkata, 700053, India.
Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.
Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.
Rev Gastroenterol Peru
January 2025
Departamento de Gastroenterología, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Hospital Sótero del Río, Santiago, Chile.
Introduction: Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections are a global public health concern. In 2019, there were 295.9 million people with chronic hepatitis B and 57.
View Article and Find Full Text PDFUltrastruct Pathol
January 2025
Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
Breast cancer patients experience more severe emotional distress and depression compared to those with other cancers. Selective serotonin reuptake inhibitors (SSRIs), like citalopram, are commonly used to treat depression. However, the link between SSRI use and breast cancer progression is debated.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Emergency, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
The brain, as a vital part of central nervous system, receives approximately 25% of body's blood supply, making accurate monitoring of cerebral blood flow essential. While fNIRS is widely used for measuring brain physiology, complex tissue structure affects light intensity, spot size, and detection accuracy. Many studies rely on simulations with limited experimental validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!