Molecular insights from integrated metabolome-transcriptome into endophyte Bacillus subtilis L1-21 surfactin against citrus Huanglongbing.

Microbiol Res

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China. Electronic address:

Published: January 2025

Metabolites of plant and microbial origin have a great influence on plant-microbe interactions. Members from Bacillus subtilis are known to produce a plethora of metabolites that shape plant responses towards biotic and abiotic stresses. Similarly, endophyte B. subtilis L1-21 efficiently controls the Huanglongbing (HLB) causing pathogen: Candidatus Liberibacter asiaticus (CLas). However, the molecular mechanisms are highly elusive. Herein, our study highlights the critical role of endophyte L1-21 in planta-produced surfactin in its colonization in citrus plants and regulation of plant-microbe interactions by comparing three gene knockout mutants △srfAA-L1-21, △sfp-L1-21, and △pel-L1-21. All three mutants exhibited reduced pathogen control and colonization efficiency compared to wild-type (WT) L1-21, but knockout mutant deficient of surfactin △srfAA-L1-21 was significantly impaired in the abovementioned functions as compared to △sfp-L1-21 and △pel-L1-21. Further, △srfAA-L1-21 could not activate various metabolic pathways in citrus as WT-L1-21. Integrated metabolomic-transcriptomic analysis reveals that important secondary metabolites such as flavonoids, volatile organic compounds, and lignins were highly accumulated in citrus plants treated with WT-L1-21 as compared to △srfAA-L1-21, highlighting the role of surfactin as an elicitor of the defense system in citrus-HLB pathosystem. Interestingly, auxin-related metabolites and transcripts were also downregulated in △srfAA-L1-21 compared to WT-L1-21 showing that surfactin might also influence plant-microbe interactions through metabolic reprogramming. Further, higher enrichment of Bacilli with WT-L1-21 might corresponds to surfactin-mediated regulation of community-related behavior in Bacilli. To the best of our knowledge, this is the first study reporting the role of surfactin from Bacillus endophyte in metabolic reprogramming in citrus-HLB pathosystem and mounting defense response against CLas pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2024.127942DOI Listing

Publication Analysis

Top Keywords

plant-microbe interactions
12
bacillus subtilis
8
subtilis l1-21
8
influence plant-microbe
8
citrus plants
8
△sfp-l1-21 △pel-l1-21
8
role surfactin
8
citrus-hlb pathosystem
8
metabolic reprogramming
8
surfactin
6

Similar Publications

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

Unlabelled: The bacterial genus includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar.

View Article and Find Full Text PDF

Sinomonas gamaensis NEAU-HV1 remodels the IAA14-ARF7/19 interaction to promote plant growth.

New Phytol

December 2024

Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.

Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.

View Article and Find Full Text PDF

RNA modifications in plant biotic interactions.

Plant Commun

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Electronic address:

The chemical modification of DNA and proteins is an efficient way of regulating molecular and biological function and affects a plethora of signalling pathways in eukaryotes. Similarly, recent progress in epitranscriptomics shows that RNA modifications also play crucial roles in diverse biological processes. Since their discovery in the 1970s, scientists have attempted to decipher the identity and functions of these modifications in different biological systems.

View Article and Find Full Text PDF

Maize ( L.), a key staple crop in Sub-Saharan Africa, is particularly vulnerable to concurrent drought and heat stress, which threatens crop yield and food security. Plant growth-promoting rhizobacteria (PGPR) have shown potential as biofertilizers to enhance plant resilience under such abiotic stresses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!