A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A data integration method for new advances in development cognitive neuroscience. | LitMetric

A data integration method for new advances in development cognitive neuroscience.

Dev Cogn Neurosci

Institute of Gerontology, Wayne State University, Detroit, MI, USA; Department of Psychology, Wayne State University, Detroit, MI,  USA; Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA. Electronic address:

Published: December 2024

Combining existing datasets to investigate key questions in developmental cognitive neuroscience brings exciting opportunities and unique challenges. However, many data pooling methods require identical or harmonized methodologies that are often not feasible. We propose Integrative Data Analysis (IDA) as a promising framework to advance developmental cognitive neuroscience with secondary data analysis. IDA serves to test hypotheses by combining data of the same construct from commensurate (but not identical) measures. To overcome idiosyncrasies of neuroimaging data, IDA explicitly evaluates if measures across studies assess the same construct. Moreover, IDA allows investigators to examine meaningful individual variability by de-confounding source-specific differences. To demonstrate IDA's potential, we explain foundational concepts, outline necessary steps, and apply IDA to volumetric measures of hippocampal subfields from 443 4- to 17-year-olds across three independent studies. We identified commensurate measures of Cornu Ammonis (CA) 1, dentate gyrus (DG)/CA3, and Subiculum (Sub). Model testing supported use of IDA to create IDA factor scores. We found age-related differences in DG/CA3, not but CA1 and Sub volume in the integrated dataset. By successfully demonstrating IDA, our hope is that future innovations come from the combination of existing neuroimaging data to create representative integrated samples when testing critical developmental questions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609474PMC
http://dx.doi.org/10.1016/j.dcn.2024.101475DOI Listing

Publication Analysis

Top Keywords

cognitive neuroscience
12
developmental cognitive
8
data analysis
8
ida
8
analysis ida
8
neuroimaging data
8
data
7
data integration
4
integration method
4
method advances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!