The methionine/glucose (Met/Glc) and methionine/glucose-derived Amadori rearrangement product (MG-ARP) models were established to analyze their differences in flavor profiles and aroma potentiality. The principal component analysis revealed the advantage of MG-ARP in the formation of low temperature-induced processing flavor. MG-ARP exhibited superior potential in the rapid formation and high intensity of processed flavor than the Met/Glc except for the inefficiency in pyrazine production. The extra-added Glc tended to react with recovered Met to compete against α-dicarbonyl compounds to suppress the Strecker degradation and pyrazine formation. The additional Met effectively improved the precursor availability and facilitated the conversion of C-α-dicarbonyl compounds to short-chained α-dicarbonyl compounds for pyrazine formation rather than their dehydration and cyclization to generate furans. The oxidation of Met favored the nonoxidative carbohydrate degradation leading to MGO formation and the aldolization of dihydropyrazines, which synergistically enriched the varieties of pyrazines, especially for the promoted formation of long-chain substituted pyrazines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142033DOI Listing

Publication Analysis

Top Keywords

promoted formation
8
α-dicarbonyl compounds
8
pyrazine formation
8
formation
6
formation pyrazines
4
pyrazines targeted
4
targeted precursor
4
precursor addition
4
addition improve
4
improve aroma
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!