Transferring enzyme features to molecular CO reduction catalysts.

Curr Opin Chem Biol

Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany. Electronic address:

Published: December 2024

Carbon monoxide dehydrogenases and formate dehydrogenases efficiently catalyze the reduction of CO. In both enzymes, CO activation at the metal active site is assisted by proximate amino acids and Fe-S-clusters. Functional features of the enzyme are mimicked in molecular catalysts by redox-active ligands, acidic and charged groups in the ligand periphery, and binuclear scaffolds. These components have all improved the catalytic performance of synthetic systems. Recent studies impart a deeper understanding of the individual contributions of the various functionalities to reactivity and of their combined effects. New catalyst platforms reveal alternate pathways for CO reduction, unique intermediates, and strategies for switching selectivity. Design of a wider array of complexes that combine different functional elements is encouraged to further optimize catalysts for CO reduction, especially for product formation beyond CO. More diverse bimetallic catalysts are needed to better exploit metal-metal interactions for CO conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2024.102540DOI Listing

Publication Analysis

Top Keywords

transferring enzyme
4
enzyme features
4
features molecular
4
reduction
4
molecular reduction
4
catalysts
4
reduction catalysts
4
catalysts carbon
4
carbon monoxide
4
monoxide dehydrogenases
4

Similar Publications

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brown University, Providence, RI, USA.

Background: Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is an important regulator of immunity and, in the brain, is primarily secreted by activated astrocytes and heralds a neurotoxic inflammatory state. While it has been well known as a high-profile biomarker for Alzheimer's disease (AD) and inflammatory brain conditions (e.g.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Miami Project to Cure Paralysis, Miami, FL, USA.

Background: Stroke and AD patients with gut complications often present worsened neurological outcomes. The goal of this study was to examine the role of extracellular vesicle (EV)-mediated pyroptosis in the bi-directional gut-brain axis after photothrombotic stroke (PTS) in aged 3xTg mice and wildtype (WT) controls.

Method: Twelve-month 3xTg and WT male and female mice underwent PTS using a YAG laser.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!