Most commercial adhesives currently available pose significant environmental concerns due to the presence of contaminants such as volatile organic compounds (VOCs). To address this challenge, much research is being focused on developing water-based adhesives. Herein, we demonstrate that polymerisation of a natural polyphenolic compound (pyrogallol) with an amino-based ligand (tris(2-aminoethyl) amine) in water allowed for the development of a novel bioinspired water-based adhesive without involving VOCs. The reaction conditions were meticulously optimised by adjusting the reaction time, ratio, drying methodology and curing temperature, to produce a functional adhesive applicable across a broad spectrum of materials. Adhesion tests demonstrated competitive and outstanding performance on aluminium, followed by wood (oak and pine) and plastics (polypropylene, polycarbonate, and polymethylmethacrylate). Notably, the adhesive outperformed one of the most commercially used adhesives on pine and oak, highlighting its competitive advantage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.11.042DOI Listing

Publication Analysis

Top Keywords

bioinspired environmentally
4
environmentally sustainable
4
sustainable polyphenol-based
4
polyphenol-based water
4
adhesive
4
water adhesive
4
adhesive commercial
4
commercial adhesives
4
adhesives currently
4
currently pose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!