The cortical surface parcellation provides prior guidance for studying mental disorders and human cognition. Graph neural networks (GNNs) have gained popularity in this task to preserve its spatial structure. However, previous GNNs struggled to effectively exploit the information contained in the complex spatial structure of the cortical surface and generally encountered an uneven node distribution issue. Meanwhile, labeling boundary nodes was also identified as a widespread problem in this task. Accordingly, this paper develops a scale-unified spatial learning network with a boundary contrastive loss (SSLNet) for cortical surface parcellation. Its core is the scale-unified spatial learning module. It devises neighbor feature extraction and aggregation strategies by fully integrating spatial coordinates and semantic structure to learn effective spatial features of local neighborhoods. More importantly, spatial scale unification is incorporated into this module to mitigate the negative effect on spatial learning caused by node distribution differences among local areas. Additionally, a universal boundary contrastive loss is constructed, enhancing the feature discriminability of boundary nodes by constraining them to be close to the same class nodes and apart from different class nodes in the feature space. It considerably improves boundary performance without increasing parameters or changing the network structure. Experiments regarding public Mindboggle demonstrate that the dice score and accuracy of SSLNet achieve and , respectively, surpassing existing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-024-03242-5DOI Listing

Publication Analysis

Top Keywords

cortical surface
16
spatial learning
16
surface parcellation
12
scale-unified spatial
12
boundary contrastive
12
contrastive loss
12
spatial
9
learning network
8
network boundary
8
spatial structure
8

Similar Publications

The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.

View Article and Find Full Text PDF

Tau oligomers impair memory and synaptic plasticity through the cellular prion protein.

Acta Neuropathol Commun

January 2025

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.

Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression.

View Article and Find Full Text PDF

Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.

View Article and Find Full Text PDF

rsfMRI-based brain entropy is negatively correlated with gray matter volume and surface area.

Brain Struct Funct

January 2025

Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 670 W Baltimore St, HSF III, R1173, Baltimore, MD, 21202, USA.

The brain entropy (BEN) reflects the randomness of brain activity and is inversely related to its temporal coherence. In recent years, BEN has been found to be associated with a number of neurocognitive, biological, and sociodemographic variables such as fluid intelligence, age, sex, and education. However, evidence regarding the potential relationship between BEN and brain structure is still lacking.

View Article and Find Full Text PDF

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!