A major locus for spike compactness and length was mapped on chromosome 7H and its pleiotropic effects, candidate genes and transcriptional regulatory network were analyzed. Spike compactness (SC) and length (SL) are important traits of barley (Hordeum vulgare L.) due to their close association with grain yield. In this study, a major SC and SL locus QSc/Sl.cib-7H was primarily identified on chromosome 7H by bulked segregant analysis, and further fine mapped to a recombination cold spot expanding 244.36-388.09 Mb by developing a secondary population using residual heterozygous lines. This region is much more accurate than previously reported spike compactness loci on chromosome 7H. The strong effects of QSc/Sl.cib-7H on SL and SC were validated in two pair of near isogenic lines (NILs) and diverse genetic backgrounds. QSc/Sl.cib-7H exhibited pleiotropic effects on plant height (PH), thousand grain weight and grain length, and did not significantly influence the spikelet number of main spike (SMS) and grain width. Transcriptome analysis based on NILs showed that regulation of SC and SL might be related to the plant circadian rhythm pathway. The candidate genes were mined by analyzing variants and expression patterns of genes in the target region employing multiple genome and transcriptome data. This study takes a further step towards cloning of QSc/Sl.cib-7H, and the data obtained and the developed molecular markers will facilitate its utilization in barley breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-024-04779-7 | DOI Listing |
Nat Comput Sci
January 2025
Key Lab of Fabrication Technologies for Integrated Circuits and Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, China.
The human brain is a complex spiking neural network (SNN) capable of learning multimodal signals in a zero-shot manner by generalizing existing knowledge. Remarkably, it maintains minimal power consumption through event-based signal propagation. However, replicating the human brain in neuromorphic hardware presents both hardware and software challenges.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, National Chung Hsing University, Taichung City, 402202, Taiwan, ROC. Electronic address:
Background: To integrate valves, manifolds, and solid-phase extraction (SPE) columns into a compact device is technically difficult. Four-dimensional printing (4DP) technologies, employing stimuli-responsive materials in three-dimensional printing (3DP), are revolutionizing the fabrication, functionality, and applicability of stimuli-responsive analytical devices that can show time-dependent shape programming to enable more complex geometric designs and functions. However, 4D-printed stimuli-responsive actuators and valves utilized to control flowing streams in SPE applications remain rare.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
(Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations-0.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610213, P.R. China.
Spike-related traits and plant height (PH) are greatly associated with wheat yield. Identification of stable quantitative trait loci (QTL) for these traits is crucial for understanding the genetic basis for yield and their further application in breeding. In this study, QTL analysis for spikelet number per spike (SNS), spike length (SL), spike compactness (SC) and PH was performed using a recombinant inbred line (RIL) population derived from a cross between wheat cultivars Mianmai902 (MM902) and Taichang29 (TC29).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!