Undersea optical communication (UOC) is vital for ocean exploration and military applications. In the dim-light underwater environment, photodetectors must maximize photon utilization by minimizing optical losses and carrier recombination. This can be achieved by integrating ultrathin metal nanostructures with photocatalysts to form Schottky junctions, which enhance charge separation and injection while mitigating metal-induced light shading. The strategic design of discrete metal nanostructures providing numerous high-depth space charge regions (SCRs) without overlap offers a promising approach to optimize hole transport paths and further suppress recombination. Here, a facile phase-separation lithography technique is explored to fabricate tunable ultrathin Ni nanoislands atop n-Si, yielding high-performance photoelectrochemical photodetectors (PEC PDs) tailored for underwater weak-light environments. This results indicate that key determinant of hole extraction behavior is the relationship between the spacing distance of adjacent Ni nanostructures (d) and twice the SCR radius (W). PEC PDs with optimized 8 nm ultrathin Ni nanostructures featuring closely but non-overlapping SCRs, exhibit a 55-fold increase in photoresponsivity (2.2 mA W) and a 128-fold enhancement in detection sensitivity (3.2 × 10 Jones) at 0 V over Ni film, revealing the exceptional stability. Furthermore, this approach enables effective detection across UV-vis-near infrared spectrum, supporting reliable multispectral UOC and underwater imaging capabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202407110 | DOI Listing |
Rev Sci Instrum
January 2025
College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.
View Article and Find Full Text PDFNanophotonics
January 2025
Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
We present a continuative definition of topological charge to depict the polarization defects on any resonant diffraction orders in photonic crystal slab regardless they are radiative or evanescent. By using such a generalized definition, we investigate the origins and conservation of polarization defects across the whole Brillouin zone. We found that the mode crossings due to Brillouin zone folding contribute to the emergence of polarization defects in the entire Brillouin zone.
View Article and Find Full Text PDFACS Earth Space Chem
January 2025
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands.
Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.
View Article and Find Full Text PDFRev Physiol Biochem Pharmacol
January 2025
Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.
This covers the roles of electrical forces in space, in creating planets, including the Earth and in creating the conditions on Earth that make life possible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!