AI Article Synopsis

  • * Researchers developed a method to align LiLaTiO nanowires magnetically, creating densely packed vertical channels in CSEs, which significantly enhances ionic conductivity.
  • * The resulting CSE demonstrates an impressive ionic conductivity of 2.5 × 10 S cm at room temperature, enabling lithium cell capacities of 115-118 mAh g depending on charging rates and temperatures, showcasing potential for improved lithium metal batteries.

Article Abstract

Composite solid electrolytes (CSEs) consisting of polymers and fast ionic conductors are considered a promising strategy for realizing safe rechargeable batteries with high energy density. However, randomly distributed fast ionic conductor fillers in the polymer matrix result in tortuous and discontinuous ion channels, which severely constrains the ion transport capacity and restricts its practical application. Here, CSEs with highly loaded vertical ion transport channels are fabricated by magnetically manipulating the alignment of LiLaTiO nanowires. The construction of densely packed, vertically aligned ion transport channels can effectively enhance the ion transport capacity of the electrolyte, thereby significantly increasing ionic conductivity. At room temperature (RT), the presented CSE exhibits a remarkable ionic conductivity of up to 2.5 × 10 S cm. The assembled LiFePO/Li cell delivers high capacities of 118 mAh g at 5 C at 60 °C and a RT capacity of 115 mAh g can be achieved at a charging rate of 0.5 C. This work paves an encouraging avenue for further development of advanced CSEs that favor lithium metal batteries with high energy density and electrochemical performance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407476DOI Listing

Publication Analysis

Top Keywords

ion transport
20
transport channels
12
vertical ion
8
lithium metal
8
metal batteries
8
fast ionic
8
batteries high
8
high energy
8
energy density
8
transport capacity
8

Similar Publications

Ultrathin polymer membrane for improved hole extraction and ion blocking in perovskite solar cells.

Nat Commun

December 2024

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.

Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.

View Article and Find Full Text PDF

Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.

View Article and Find Full Text PDF

A truncated isoform of Connexin43 caps actin to organize forward delivery of full-length Connexin43.

J Cell Biol

March 2025

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.

While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.

View Article and Find Full Text PDF

Solid polymer electrolytes have yet to achieve the desired ionic conductivity (>1 mS/cm) near room temperature required for many applications. This target implies the need to reduce the effective energy barriers for ion transport in polymer electrolytes to around 20 kJ/mol. In this work, we combine information extracted from existing experimental results with theoretical calculations to provide insights into ion transport in single-ion conductors (SICs) with a focus on lithium ion SICs.

View Article and Find Full Text PDF

Engineering and construction of multi-functional Janus separator for high-stability Li-CO battery.

J Colloid Interface Sci

December 2024

National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China. Electronic address:

Due to the high theoretical energy density, lithium-carbon dioxide (Li-CO) batteries provide unique advantages when using CO to generate electricity. However, the issues with lithium dendrite generated by uneven deposition and quick cathode passivation continue to impede the development of Li-CO batteries. In this work, a Janus separator with dual functionalities is created using an in-situ growth and hydrothermal technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!