Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Methotrexate (MTX) is commonly employed in cancer treatment, but its clinical use is restricted due to the MTX-associated renal injury. This study investigates the combined potential of Rhus coriaria (sumac) and bone marrow mesenchymal stem cells (BMMSCs) against MTX-induced nephrotoxicity in rats. The high-resolution-liquid chromatography-mass spectrometry (HR-LC-MS) of sumac extract tentatively identified 22 phytochemicals, mostly flavonoids, anthocyanins, and steroids. Preparation of sumac liposomes attained a suitable particle size of 3041.33 ± 339.42 nm, a polydispersity index of 0.208 ± 0.086, and an encapsulation efficiency of 84.92 ± 3.47%. Rat BMMSCs were injected into the tail vein of the experimental rats (0.5 × 10 cells, intravenous [iv]) of seven treated groups. The experimental design relies on either pre- or posttreatment of rats with intraperitoneal (IP) sumac liposomes (SL) (200 mg/kg, daily with a dose of MTX (300 µg/kg/14 days). The histopathological examination and serum analysis of creatinine and urea revealed good results, besides regulating levels of oxidative stress and inflammatory markers. Additionally, a significant decrease in the gene expression levels of B-Cell Lymphoma 2 (Bcl-2) and caspases-3 and -9, a remarkable increase in the Bcl-2 Associated X-Protein (Bax), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme-oxygenase 1 expression, and a downregulation of Kelch-like ECH-associated protein 1 (Keap1). Collectively, the coadministration of SL with BMMSCs might be a potent therapeutic strategy for attenuation of MTX-induced renal damage. The network pharmacology analysis identified the involved key hub genes as KEAP1, Nrf2, HMOX1, mitogen-activated protein kinase (MAPK1), nuclear factor-kappa B (NF-KB), interleukin-1 beta (IL-1B), and caspase-3. The docking results revealed strong binding affinities of 7-O-methyl-cyanidin-3-O-(2″-galloyl)-galactoside with Keap1 and amentoflavone with MAPK. These insights pave the way for future experimental validation and therapeutic development of sumac-based phytoconstituents against MTX-induced nephrotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.202400684 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!