Background: Exosomes (Exos) from adipose-derived stem cells (ADSCs) have a high inclusion content and low immunogenicity, which helps to control inflammation and accelerate the healing of wounds. Unfortunately, the yield of exosomes is poor, which raises the expense and lengthens the treatment period in addition to impairing exosomes' therapeutic impact. Thus, one of the key problems that needs to be resolved in the current exosome study is increasing the exosome yield.
Methods: Tetraspanin-6 (TSPAN6) overexpression and knockdown models of ADSCs were constructed to determine the number of exosomes secreted by each group of cells as well as the number of multivesicular bodies (MVBs) and intraluminal vesicles (ILVs) within the cells. Subsequently, the binding region of the interaction between TSPAN6 and syntenin-1 was identified using the yeast two-hybrid assay, and the interaction itself was identified by immunoprecipitation. Finally, cellular and animal studies were conducted to investigate the role of each class of exosomes.
Results: When compared to the control group, the number of intracellular MVBs and ILVs was significantly larger, and the number of ADSCs-Exos was more than three times higher. However, TSPAN6's ability to stimulate exosome secretion was reduced as a result of syntenin-1 knockdown. Additional yeast two-hybrid assay demonstrated that the critical structures for their interaction were the N-terminal, Postsynaptic density protein 95/Discs large protein/Zonula occludens 1 (PDZ1), and PDZ2 domains of syntenin-1, and the C-terminal of TSPAN6. In animal trials, the wound healing rate was best in the ADSCs-Exos group, while cellular experiments demonstrated that ADSCs-Exos better enhanced the proliferation and migration of human skin fibroblasts (HSFs) and human umbilical vein endothelial cells (HUVECs).
Conclusion: TSPAN6 stimulates exosome secretion and formation, as well as the creation of MVBs and ILVs in ADSCs. Syntenin-1 is essential for TSPAN6's stimulation of ADSCs-Exos secretion. Furthermore, ADSCs-Exos has a greater ability to support wound healing, angiogenesis, and the proliferation and migration of a variety of cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566053 | PMC |
http://dx.doi.org/10.1186/s13287-024-04004-8 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India.
Background: Vascular Dementia (VaD) is the second most prevalent cause of dementia, arising from the blockage of blood vessels in the brain. One event responsible for the blockage or narrowing of small blood vessels is transient ischemic attack (TIA), and these changes resolve within 24 hours in humans. The molecular mechanism underlying these changes in recovery in small vessels still needs to be investigated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!