Dietary zinc deficiency is a major risk factor for pneumonia. Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical public health threat due to increasing rates of multidrug resistance. Patient populations at increased risk for A. baumannii pneumonia are also at increased risk of zinc deficiency. Here we established a mouse model of dietary zinc deficiency and acute A. baumannii pneumonia to test the hypothesis that host zinc deficiency contributes to A. baumannii pathogenesis. We showed that zinc-deficient mice have significantly increased A. baumannii burdens in the lungs, dissemination to the spleen and higher mortality. During infection, zinc-deficient mice produce more pro-inflammatory cytokines, including IL-13. Administration of IL-13 promotes A. baumannii dissemination in zinc-sufficient mice, while antibody neutralization of IL-13 protects zinc-deficient mice from A. baumannii dissemination and mortality during infection. These data highlight the therapeutic potential of anti-IL-13 antibody treatments, which are well tolerated in humans, for the treatment of pneumonia.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41564-024-01849-wDOI Listing

Publication Analysis

Top Keywords

zinc deficiency
20
dietary zinc
12
zinc-deficient mice
12
baumannii
8
acinetobacter baumannii
8
increased risk
8
baumannii pneumonia
8
mortality infection
8
baumannii dissemination
8
deficiency
5

Similar Publications

A small molecule modified UiO series MOFs for simultaneous detection of Fe and Zn.

Talanta

December 2024

Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:

Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe and Zn can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe and Zn provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH and OH/NH)) was developed for the simultaneous detection of Fe and Zn.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Immunosenescence, the slow degradation of immune function over time that is a hallmark and driver of aging, makes older people much more likely to be killed by common infections (such as flu) than young adults, but it also contributes greatly to rates of chronic inflammation in later life. Such micro nutrients are crucial for modulating effective immune responses and their deficiencies have been associated with dysfunctional immunity in the elderly. In this review, we specifically focused on the contribution of major micro nutrients (Vitamins A, D and E, Vitamin C; Zinc and Selenium) as immunomodulators in ageing population especially related to inflame-ageing process including autoimmunity.

View Article and Find Full Text PDF

Yak (), a special breed of cattle on the Qinghai-Tibet Plateau, has low fertility due to nutritional deficiency, especially the trace elements. The steroid hormones estradiol (E2) and progesterone (P4) synthesized by yak follicular granulosa cells (BGCs) are involved in the entire reproductive process. In the present study, we investigated the effects of trace elements and vitamins on yak follicular GCs, including the cellular activity, the synthesis of E2 and P4, and the expression of genes related to steroid hormone synthesis.

View Article and Find Full Text PDF

Modified Vaccinia Virus Ankara Selectively Targets Human Cancer Cells With Low Expression of the Zinc-Finger Antiviral Protein.

J Med Virol

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Oncolytic viruses are emerging as promising cancer therapeutic agents, with several poxviruses, including vaccinia virus (VACV) and myxoma virus, showing significant potential in preclinical and clinical trials. Modified vaccinia virus Ankara (MVA), a laboratory-derived VACV strain approved by the FDA for mpox and smallpox vaccination, has been shown to be incapable of replicating in human cells unless zinc finger antiviral protein (ZAP) is repressed. Notably, ZAP deficiency is prevalent in various cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!