AI Article Synopsis

  • In situ hybridization (ISH) is a technique for examining the location of nucleic acids in fixed samples, often enhanced using fluorophores or colorimetric labels for better visibility.
  • The pSABER platform is introduced as a new method for amplifying ISH signals by adding binding sites for specific oligonucleotides, which makes it possible to detect RNA and DNA more effectively in various sample types.
  • pSABER provides five times more signal amplification than traditional methods and allows for multiple targets to be analyzed simultaneously, making it a valuable tool for both research and clinical applications.

Article Abstract

In situ hybridization (ISH) is a powerful tool for investigating the spatial arrangement of nucleic acid targets in fixed samples. ISH is typically visualized using fluorophores to allow high sensitivity and multiplexing or with colorimetric labels to facilitate covisualization with histopathological stains. Both approaches benefit from signal amplification, which makes target detection effective, rapid and compatible with a broad range of optical systems. Here, we introduce a unified technical platform, termed 'pSABER', for the amplification of ISH signals in cell and tissue systems. pSABER decorates the in situ target with concatemeric binding sites for a horseradish peroxidase-conjugated oligonucleotide, enabling the localized deposition of fluorescent or colorimetric substrates. We demonstrate that pSABER effectively labels DNA and RNA targets in cultured cells and FFPE specimens. Furthermore, pSABER can achieve fivefold signal amplification over conventional signal amplification by exchange reaction (SABER) and can be serially multiplexed using solution exchange. Therefore, by linking nucleic acid detection to robust signal amplification capable of diverse readouts, pSABER will have broad utility in research and clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-024-02512-2DOI Listing

Publication Analysis

Top Keywords

signal amplification
16
nucleic acid
12
acid targets
8
psaber
5
amplification
5
efficient highly
4
highly amplified
4
amplified imaging
4
imaging nucleic
4
targets cellular
4

Similar Publications

Biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker for visualization and quantification of miRNA-21.

Talanta

December 2024

Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, Shanxi, 030600, PR China.

Developing a fluorescence sensing platform for point-of-care detection of low abundance biomarkers is highly valuable for early diagnosis of disease. Herein, a biomimetic fluorescence-enhanced platform based on photonic crystals and DNAzyme walker was constructed and further applied to visualize and quantify the miRNA-21 in biological samples. The DNAzyme walker was orthogonally activated by the target miRNA-21, which enabled the unlocking of the DNAzyme walker strand and the subsequently repeated substrate cleavage, thus generating enhanced fluorescence signals.

View Article and Find Full Text PDF

Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs.

Talanta

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:

Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.

View Article and Find Full Text PDF

M13 bacteriophage based fluorescence immunoassay against food allergens of Ara h 3 and Mac i 1.

Food Chem

December 2024

Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.

View Article and Find Full Text PDF

Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils.

Biosens Bioelectron

December 2024

Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China. Electronic address:

The construction of structure-guided aptamers and the ultra-sensitive aptamer-based lateral flow assays (Apt-LFA) integrated detection method hold significant potential for food analysis. Using an engineered modified sequence strategy, we successfully developed the aptamer Cap-1-2M4, significantly enhancing its affinity for capsaicin (CAP) to 0.6197 ± 0.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!